

LPIC-1 101-400 – Lesson 5

103.5 Create, monitor and kill
processes

Processes

 A process is the copy of a program executed in the
memory (RAM) at a specific moment

 Processes are created when we call a program by its
name

 Every process has an integer unique id (Process ID
- PID)

 Processes created by other parent processes are
called child processes

init

 It is under /sbin/init
 It is “the mother of all processes” because all other

processes are either directly or indirectly children
of init.

 It has a PID equal to 1
 If you kill init all other processes die too and the

system freezes.

Note: in some systems (e.g. RedHat) init has been
replaced by systemd

Display running processes with `ps`

 The ps command can show us valuable information
about running processes

 The options of ps can be confusing because some
are compatible with the UNIX 98 standard and
others with the BSD Unix standard

 UNIX 98: these options have a single dash
 BSD: these options have no dash
 GNU: these options have a double dash

 $ ps # show the current shell and
its processes

 $ ps a # display all processes
that belong to terminals (tty)

 $ ps au # display additional
fields like USER

 $ ps aux # display all processes
including services (daemons) and
system programs

Display running processes with `ps`

 $ ps auxw # w will adapt the length of
the output to the output of the
terminal without truncating it at 80
columns

 $ ps auxwf # will display the
hierarchical relationship between
parents and children in a tree

 $ ps eaux # display the environment
variables for each process

 $ ps -e # display all processes

 $ ps -ef # same as above but display
additional columns like PPID.

Display running processes with `ps`

 $ ps -f -u theo # display processes for user theo
 # in UNIX98 format

UID PID PPID C STIME TTY TIME CMD

theo 1674 1 0 16:50 ? 00:00:00
/usr/bin/gnome-keyring-daemon --daemonize --login
theo 1693 1669 0 16:50 ? 00:00:00 gnome-
session –session=classic-gnome
theo 1728 1693 0 16:50 ? 00:00:00
/usr/bin/ssh-agent /usr/bin/dbus-launch --exit-with-session
gnome-session –session=classic-gnome
theo 1731 1 0 16:50 ? 00:00:00
/usr/bin/dbus-launch --exit-with-session gnome-session --
session=classic-gnome
theo 1732 1 0 16:50 ? 00:00:00 //bin/dbus-
daemon --fork --print-pid 5 --print-address 7 --session
theo 1737 1 0 16:50 ? 00:00:00
/usr/lib/libgconf2-4/gconfd-2
theo 1742 1 0 16:50 ? 00:00:03
/usr/lib/gnome-settings-daemon/gnome-settings-daemon

Display running processes with `ps`

 $ ps uU theo # display processes for user theo
 # in BSD format
USER PID %CPU %MEM VSZ RSS TTY STAT START
TIME COMMAND

theo 1674 0.0 0.0 153844 3396 ? Sl 16:50
0:00 /usr/bin/gnome-keyring-daemon --daemonize --login
theo 1693 0.0 0.2 239332 8444 ? Ssl 16:50
0:00 gnome-session –session=classic-gnome
theo 1728 0.0 0.0 12092 288 ? Ss 16:50
0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --exit-with-
session gnome-session –session=classic-gnome
theo 1731 0.0 0.0 26400 612 ? S 16:50
0:00 /usr/bin/dbus-launch --exit-with-session gnome-session
--session=classic-gnome
theo 1732 0.0 0.0 25820 2160 ? Ss 16:50
0:00 //bin/dbus-daemon --fork --print-pid 5 --print-address
7 --session
theo 1737 0.0 0.1 57160 5672 ? S 16:50
0:00 /usr/lib/libgconf2-4/gconfd-2
theo 1742 0.0 0.4 459272 17836 ? Ssl 16:50
0:03 /usr/lib/gnome-settings-daemon/gnome-settings-daemon

Display running processes with `ps`

 $ ps -C getty # display processes
 # of the getty command

 PID TTY TIME CMD

 1046 tty4 00:00:00 getty

 1052 tty5 00:00:00 getty

 1067 tty2 00:00:00 getty

 1069 tty3 00:00:00 getty

 1074 tty6 00:00:00 getty

 1465 tty1 00:00:00 getty

Display running processes with `ps`

Field Name Description

USER/UID Name of the user under whom the process is running

PID Process ID

%CPU/C CPU utilization. Percentage for BSD, integer for UNIX98

%MEM Memory Utilization

PPID Parent Process ID

VSZ Virtual Memory Size

RSS Resident Set Size

TTY tty used by the process

STAT Process Status

START/STIME Time when process started

TIME Additive time of CPU utilization

COMMAND/
CMD

Program name (optionally with options and arguments)

Output field of `ps`

(

Dynamic display of running processes
with `top`

 top is an interactive command that displays the
most active processes

 It sorts based on CPU utilization by default
 Besides CLI options it accepts interactive

commands
 It also displays processes stats system utilization,

CPU, Memory, uptime, etc
 We can quit top by pressing q

top - 18:51:33 up 2:02, 3 users, load average: 0.00, 0.01, 0.05

Tasks: 164 total, 1 running, 162 sleeping, 0 stopped, 1 zombie

Cpu(s): 2.0%us, 1.5%sy, 0.0%ni, 95.9%id, 0.6%wa, 0.0%hi, 0.0%si,
0.0%st

Mem: 3987872k total, 1597792k used, 2390080k free, 69636k buffers

Swap: 3506172k total, 0k used, 3506172k free, 541848k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 1386 root 20 0 369m 91m 64m S 2 2.4 3:14.83 Xorg

 1998 theo 20 0 113m 32m 16m S 2 0.8 2:46.11 npviewer.bin

 2311 theo 20 0 324m 17m 11m S 1 0.4 0:07.12 gnome-terminal

 1985 theo 20 0 234m 19m 14m S 1 0.5 1:14.67 plugin-containe

Dynamic display of running processes
with `top`

 In the top header we can find the
following information:

 Uptime
 Load average
 Number of users
 Total number of processes and

statistics based on process status
 CPU utilization statistics
 Memory and Swap space utilization

statistics

Dynamic display of running processes
with `top`

Options:
 -b # useful for sending stdout

data to other commands or files.
Useful with -n

 -d 1 # update screen every 1s
instead of the default 5s

 -i # do not display inactive
processes

 -n 5 # close after5 successive
displays

Dynamic display of running processes
with `top`

Interactive commands:

 Spacebar: reload display

 h: help

 k: kill process (with signal 15)

 n: change number of displayed processes

 q: exit top

 r: change command priority (nice/renice)

 s: change renewal period

 Μ: sort based on memory utilization

 P: sort based on cpu utilization

Dynamic display of running processes
with `top`

Run commands to foreground and
background

 $ find / -exec grep -i linux {} \;

Ctrl-Z # suspend the command above
 $ bg # re-activate the command in

the background. If there are more
than one suspended commands we
can choose which one to send to
background

 $ find / -name Linux & # the
ampersand operator (&) will send
the command straight to
background

 $ jobs # display background or
suspended commands

 $ fg 2 # restore the 2nd background or
suspended command to the foreground.
If we do not set a number it will
choose the first one

 The background processes are still child processes of the
shell it created them, and can be terminated if the shell is
terminated

 $ nohup find / # detach find from the
parent shell and redirect stdout and
stderr to the nohup.out file.

Run commands to foreground and
background

Signal processes with `kill`

 The command kill, in spite of its name, is not just
used for killing processes but to send different
signals to them. These signals can trigger
different responses from the processes. It takes
PID(s) as argument

 There are 64 different signals, in total, and we will
study only the most significant of them. Signals
can be expresses with names or numbers

 $ kill -l # show the names and
numbers of all signals

Signal Name Number Description

SIGHUP/
HUP

1 Hang up. Forces a service to re-read its configuration and
closes interactive applications

SIGINT/
INT

2 Interrupt. Stops the execution of a command just like when
we press Ctrl-C

SIGKILL/
KILL

9 Kill. Kills without mercy! The process is instantly terminated
with the risk of losing data. Use only in emergency

SIGTERM/
TERM

15 Terminate. The programs closes gracefully,just like when
closed normally. It will first finish any pending tasks, save
the data and terminate. This is the most preferable method
of closing programs. It is the default signal of kill

SIGTSTP/
TSTP

20 TTY Stop. The execution of a program is suspended and
the process expects the next signal (CONT) to resume.
Sent when Ctrl-Z is pressed

SIGCONT/
CONT

18 Continue. Send to suspended processes to resume at the
same state before being suspended

Signal processes with `kill`

 $ kill 3459 # terminate PID 3459 use ps first
to find the process you are looking for

 $ kill -15 3459 # = kill -TERM 3459; kill -
SIGTERM 3459. All these commands have the
same effect since signal 15 is the default

 $ kill -9 2523 # = kill -[SIG]KILL. Kill
process without warning! Any unsaved data
will be lost and temporary files will remain
in the filesystem

Signal processes with `kill`

Note: the only processes that can resist SIGKILL, are the Zombie
processes. These are marked with Z in the STAT field of ps and just
like fictional Zombies they can not be killed because they are already
dead!

 $ kill -s HUP 1498 # = kill -1. if
the process is a daemon (system
service) like Apache it will be
forced to re-read its
configuration, without
restarting. Interactive commands
like top will be terminated
gracefully

 $ kill -s 15 $(cat
/var/run/cups/cupsd.pid) #
gracefully terminate daemon cupsd

Signal processes with `kill`

Signal processes based on process
name with `killall`

 killall works in a similar fashion , just like, kill
except that we give the process name as an
argument instead of the PID

 killall will send the signal to all processes with the
same name

 The default signal is 15 (SIGTERM) and options
are the same as kill

 $ killall apache2 # terminate with
15 all Apache daemon processes“My favorite OS? … LINUX without a doubt. Get this! It even

has a “killall” command!!”

~ George RR Martin ~

Find a Process ID with `pgrep`

 pgrep will return all the PID based on the process name

 $ pgrep apache # return the PID
 # of all processes #
matching "apache"

20955
29064
29420
29433
29862

 Options:

 -f search the whole command line not just the
name

 -x exact match

Signal a process by pattern with
`pkill`

 pkill is a sister of pgrep and they share almost the same
options. It signals the processes based on the match

 $ pkill apache # terminate all
processes matching "apache" in their
name

 $ pkill -x apache2 # terminate all
processes matching exactly "apache2"

 $ pkill -f start # terminate all
processes matching "start" in their
name or options/arguments

Show memory and swap utilization
with `free`

 $ free # show usage of memory and
swap space in bytes

Options:

 -b # show in bytes (default)
 -k # show in kilobytes

 -m # show in megabytes

 -g # show in gigabytes

 -s 2 # renew every 2 seconds

Show system’s running time with
`uptime`

 $ uptime # show current time,
total system running time since
the system started (uptime),
number of users and load average

 Options:
 -V # the only option of uptime

shows the current version of the
command

 $ uptime

14:34:03 up 10:43, 4 users, load average: 1.73, 0.50, 7.98

In a system with just one CPU these results are interpreted as:
 1.73: 73% overloaded system the last minute (0.73

processes had to wait in queue)
 0.50: 50% underloaded system the last 5 minutes (no

process had to wait in queue)
 7.98: 698% overloaded the last 15 minutes (6.98 processes

had to wait in queue)

Show system’s running time with
`uptime`

Multiplex shells with `screen`

 screen allows the parallel execution of multiple
shell on the same terminal

 screen sessions are persistent after being detached
from the terminal

 A screen session can be resumed later to check on
the progress of a process etc.

 tmux and byobu are two other popular screen
multiplexers

Multiplex shells with `screen`

 $ screen # launch screen

Crtl-a d # detach screen from terminal

 $ screen -r # re-attach detached screen session

 $ screen -r # if there are more than one detached screen
 # session you will be prompted to choose one

There are several suitable screens on:

 13466.pts-0.srv (06/27/2018 05:44:55 PM) (Detached)

 13396.pts-0.srv (06/27/2018 05:38:38 PM) (Detached)

 13346.pts-0.srv (06/27/2018 05:37:31 PM) (Detached)

Type "screen [-d] -r [pid.]tty.host" to resume one of them.

 $ screen -r 13466 # re-attach screen session with PID 13466

 $ screen -d 25676 # detach session already attached to another
terminal

Multiplex shells with `screen`

Screen Key Bindings:
 Ctrl-a a # rebinds Ctrl-a to home
 Ctrl-a c # Create a new parallel shell
 Ctrl-a Ctrl-a # switches to the previous shell
 Ctrl-a ' # Select shell to switch
 Ctrl-a " # show active shells and select one
 Ctrl-a 5 # Switch to shell 5
 Ctrl-a d # detach screen from current terminal
 Ctrl-a n # go to next shell
 Ctrl-a p # go to previous shell

License

The work titled ”LPIC-1 101-400 – Lesson 5” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

