

LPIC-1 101-400 – Lesson 21

104.5 Manage file permissions and
ownership

Security in accessing files

 Files in a Linux system have a preset ownership i.e.
they belong to a user and a group. This is one of
the basic security measures of the system

 Another feature is the option to have file access
permissions i.e. the rights that a user or a group
will have upon a file

Recognize permissions and ownership

 $ ls -l /bin/bash
-rwxr-xr-x 1 root root 950896 2011-05-18 13:00 /bin/bash

File type: -: regular file, d: directory, l: symbolic link, b: block device, c:
character device, p: named pipe

User permissions: r: read, w: write, x: execute

Group permissions: r: read, x: execute

Others permissions: r: read, x: execute

User ownership: owner user of file

Group ownership: group owner of file

SUID, SGID, and Sticky bits

 $ ls -l /bin/umount
-rwsr-xr-x 1 root root 64968 2011-08-09
19:16 /bin/umount

SUID bit: an s, in the place of execute
bit (x) of user permissions, sets the SUID
bit

 $ ls -ld /run/log/journal
drwxr-sr-x 3 man root 60 Jul 18 16:04
/run/log/journal

SGID bit: an s, in the place of execute
bit (x) of group permissions sets the SGID
bit

 # ls -ld /tmp
drwxrwxrwt 20 root root 12288 2011-11-17
05:17 /tmp

Sticky bit: a t, in the execute bit (x) of
others permissions, sets the Sticky bit

 SUID bit:
 For executable files: indicates that this program will

run under the permissions of the file owner and not
the user that calls the program. It only works on
binary executables but not scripts

 For directories: no effect
 SGID bit:

 For executable files: indicates that this program will
run under the permissions of the file group and not
the group of the user that calls the program. It only
works on binary executables but not scripts

 For directories: the new files in the directory will
assume the group of the directory not the group on
the user

SUID and SGID bits

 Sticky bit:
 For executable files: no effect on Linux

systems
 For directories: only the owner has the right

to delete or rename files under the sticky
directory, no matter what permissions exist
in the file. We usually find the Sticky bit in /
tmp/

Sticky bit

Permissions table
Permissions Symbol Files effect Directories effect

Read r Read file contents List directory
contents with `ls`

Write w Write, change or
delete file

Create and delete
files and
subdirectories, in the
directory

Execute x Execute file Access the directory
using `cd`

SUID s (in user owner
permissions)

Execute file with the
file’s user ownership

No effect

SGID s (in group owner
permissions)

Execute file with the
file’s group ownership

New files have the
same group as
directory

Sticky t (in others permissions) No effect User can write,
rename or delete
only their own files
or subdirectories

Octal system in Permissions

Octal number Binary number Access
Permissions (rwx)

Security
permissions

(suid, sgid, sticky)
0 000 --- None

1 001 --x sticky

2 010 -w- sgid

3 011 -wx sgid, sticky

4 100 r-- suid

5 101 r-x suid, sticky

6 110 rw- suid, sgid

7 111 rwx suid, sgid, sticky

 Example:
$ chmod 4750 test.sh
$ ls -l test
-rwsr-x--- 1 theo theo 0 2011-11-18 05:05 test

Octal mode for changing permissions

Security Bits Owner user Owner group Others

SUID SGID Sticky r w x r w x r w x

Use in `chmod` View in `ls` Notes
755 (0755) rwxr-xr-x
640 (0640) rw-r-----

4750 rwsr-x--- SUID

2755 rwxr-sr-x SGID

1777 rwxrwxrwt Sticky

6750 rwsr-s--- SUID, SGID

4644 rwSr--r-- SUID without x !!!

2640 rw-r-S--- SGID without x !!!

1666 rw-rw-rwT Sticky without x !!!

6666 rwSrwSrw- SUID, SGID without
x !!!

User categories

Symbol Category
u User

g Group

o Others

a All

Symbolic mode for changing
permissions

Permissions

Symbol Permission

r Read permission

w Write permission

x Execute permission

X Execute permission
for directories or for

files with at least
one execute bit

s SUID or SGID
permissions

t Sticky permission

With symbolic mode we can set bits exactly as defined or we can add and
remove bits without affecting the rest

Operands

Symbol Operation

- Remove permission

+ Add permission

= Set permissions
exactly as defined

Symbolic expression Description

g+w Set the write bit (w) for group. Permissions r and x are not
affected

ug+x Set the execute bit (x) for user and group. Permissions r
and w are not affected

o+rw Set the read and write bits (rw) for others. The x
permission is not affected

go-wx Remove the write and execute bits (rx) from group and
others. The r permission is not affected

a-x Remove the execute bit (x) from all. Other permissions are
not affected

o-rwx Remove all permissions for others. User and group
permissions are not affected

ug=rw (ug+rw,ug-x) Set read and write bits (rw) and remove execute bit (if set)
for user and group. Others permissions are not affected

a=rw (a+rw,a-x) Set read and writes bits (rw) and remove the execute bit (if
set) for all categories

Symbolic mode for changing
permissions

Symbolic expression Description

g+X Set the execute bit (x) for group but only for directories or
files already having the x bit in any of the categories (user,
group, others). Files without x will be ignored. Useful
during recursion

u+s Set the SUID bit. If there is no x already it will appear as S
in long listing (ls -l), and it will have no effect. Affects files
only!

u+xs Set the execute (x) and SUID bits for user

u-s Remove the SUID bit

g+s Set the SGID bit. If there is no execute bit (x) it will appear
as S in the long listing (ls -l)

g+xs Set execute (x) and SGID bit for group

g-s Remove SGID bit

o+t Set the Sticky bit. It will appear as T if x is not set. Affects
directories only

Symbolic mode for changing
permissions

Change permissions with `chmod`

 $ chmod 750 test.txt # set -rwxr-x---
permissions

 $ ls -l test.txt # verify the permissions
-rwxr-x--- 1 theo theo 10 2011-11-18 05:47
test.txt

 $ chmod 666 test.txt # read and write
permissions to all (and a ticket to hell!).

 $ ls -l test.txt # verify
-rw-rw-rw- 1 theo theο 10 2011-11-18 05:47
test.txt

 $ chmod 664 test.txt # much better than 666
 $ ls -l test.txt # verify

-rw-rw-r-- 1 theo theο 10 2011-11-18 05:47
test.txt

 $ chmod 700 dir/ # list permission (r), file
creation/delete permission (w) and access
permission (x), only for user

 $ ls -ld dir # verify
drwx------ 2 theo theo 4096 2011-11-19 07:23
dir

 $ chmod 750 dir/ # list permission (r), file
creation/delete permisson (w) and access
permission (x), for user and list and access
permission for group. No rights for others

 $ ls -ld dir # verify
drwxr-x--- 2 theo theo 4096 2011-11-19 07:23
dir

Change permissions with `chmod`

 $ chmod a+x test.txt # add execution
permission for all

 $ chmod ug+rw test.txt # add read and write
for user and group

 $ chmod o-rwx test.txt # remove all
permissions from others

 $ chmod a-x,o-w test.txt # remove execution
permission form all and remove write from
others

 $ chmod go=rw test.txt # set read and write
and remove execution, for group and others

 $ chmod u+rwx,g=rx test.txt # set read, write
and execute for user and read and write for
group. Remove execution from group if exists

Change permissions with `chmod`

 $ chmod ug+s test.bin # set SUID and SGID. If
there is no execute for user and group there
is no effect

 $ chmod ug+xs test.bin # set SUID and SGID
with their respective execution permissions.
A safer option of the command above

 $ chmod ug-s test.bin # remove SUID and SGID.
 $ chmod g+xs dir1 # set SGID on the dir1

directory
 $ chmod o+t dir1 # set Sticky in the dir1

directory. Sticky works even if there is no
execute bit for others. In that case it will
appear as T in long listing

Change permissions with `chmod`

 $ chmod -R a+w dir1 # grant write for dir1 and
all its files and subdirectories

 $ chmod -R a-x dir1 # bad example! This will
remove the execute bit from all files and
directories also. This will cause the effect
of not be able to use ls for dir1 and its
subdirectories

 $ find dir1 -type f -exec chmod a-x {} # a
safer option in respect with the command
above

 $ chmod -R a+X dir1 # recursively set the
execute flag to dir1 and subdirectories. It
will also set the execute bit on all files
that already have the execute bit in one of
their user, group or others fields

Change permissions with `chmod`

Options:
 -R # recursively apply permissions

 in files and directories
 -c # report changed files
 -v # verbose output. Report all

files

Change permissions with `chmod`

Find files using permissions with
`find`

 $ find / -perm 664 # find files with
permissions exactly 644

 $ find / -perm -111 # find files with execute
permissions in user, group and others,
ignoring the rest of the permissions
(logical AND operation)

 $ find / -perm /111 # find files with execute
permissions in either user, group or others,
ignoring the rest of the permissions
(logical OR operation)

 $ find / -perm -4000 # find files with SUID
 $ find / -perm -6000 # find files with SUID

and SGID
 $ find / -perm /6000 # find files with SUID or

SGID

Set default permission mask with
`umask`

 The umask command set the default permissions for files and
directories. It is usually predefined in /etc/profile or ~/.profile

 $ umask # show the umask used in the current
 # shell
0022

 To calculate the umask to be used we subtract the desired result from
0666

 To calculate the permissions result given the umask we add the
umask to 0666 for files or 0777 for directories. See the example
table:

Description Files Directories

Reference permissions 0666 0777

umask 0022 0022

Result 0644 0755

 $ umask 0027 # set umask to 0027
 $ umask # show new umask

0027
 When a number in the reference permission is smaller than

the respective number of the umask the result is 0, e.g.:

Set default permission mask with
`umask`

Description Files Directories

Reference permissions 0666 0777

umask 0027 0027

Result 0640 0750

Change ownership with `chown`

 The chown command is used to change the ownership of
the user and/or the group. Only the root user has the
right to change the ownership for files or directories

 # chown user1 file.txt # change the
ownership of file.txt to user user1

 # chown -R user1 dir # interactively
change the ownership of directory dir,
as well as its files and
subdirectories, to user user1

 # chown user1:group1 file.txt # change
the ownership of file.txt to user
user1 and group group1. Equivalent
with chown user1.group1 which is
considered an obsolete form

Options:
 -R # apply ownership recursively

to directories and subdirectories
 -c # report changed files
 -v # verbose output. Report all

files

Change ownership with `chown`

Change the group ownership with
`chgrp`

 To chgrp command is used for changing the group
ownership only. The root user has the right to change the
group ownership of files and directories. Regular user
have the right to change the group ownership to one of
the groups they are a members, and only if they are the
user owners of a file or directory

 # chgrp group1 file.txt # =
chown :group1. Change the group
ownership of file.txt to group1

 # chown group1 dir # Change the group
ownership of dir to group1

 # chown -R group1 dir # interactively
change the group ownership of dir, as
long as its files and subdirectories,
to group1

 Options:
 -R # apply group ownership

recursively to directories and
subdirectories

 -c # report changed files
 -v # verbose output. Report all

files

Change the group ownership with
`chgrp`

License

The work titled ”LPIC-1 101-400 – Lesson 21” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

