

LPIC-1 101-400 – Lesson 10

101.2 Boot the system

Basic Input/Output System (BIOS)

 BIOS is the basic startup system on PCs (aka
Firmware)

 It is saved in ROM
 Provides the Power On Self Test (POST)
 Provides the initial configuration of devices
 It detects the boot loader and starts the system

 Every vendor has a different interactive environment
 Using the interactive environment we can

 configure devices
 set the time
 enable/disable system devices
 enable/disable peripherals
 set the boot devices
 set security passwords for BIOS and startup

 Most vendors have today replaced the legacy BIOS with
the more powerful UEFI (Unified Extensible Firmware
Interface)

Basic Input/Output System (BIOS)

Show the kernel startup parameters

 $ cat /proc/cmdline # show the kernel
startup parameters

 These parameters can be set by the boot loader
configuration file

 /boot/grub/menu.lst # Legacy GRUB configuration file
 /boot/grub/grub.cfg # GRUB2 configuration file on

Debian and most systems
 /boot/grub2/grub.cfg # GRUB2 configuration file on Red

Hat, CentOS and Fedora

The /etc/default/grub file

 For GRUB2 in most cases do not edit the configuration files
directly. Usually there is a helper configuration file under
/etc/default/grub and we can edit startup parameters in there.

 $ cat /etc/default/grub

GRUB_DEFAULT=0
GRUB_HIDDEN_TIMEOUT=0
GRUB_HIDDEN_TIMEOUT_QUIET=true
GRUB_TIMEOUT=3
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null ||
echo Debian`
GRUB_TERMINAL="console serial"
GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0"
GRUB_CMDLINE_LINUX="

 If we want to add kernel parameters we can add these in the
GRUB_CMDLINE_LINUX variable and then run:
update-grub

Some important kernel parameters

 quiet # hide messages during
startup

 rw # mount root device for read
and write

 ro # mount root device for read-
only

 root=/dev/sda1 # set root
filesystem

 S # enter single user mode
(runlevel 1)

 init=/sbin/init # set alternative
startup program instead of
/sbin/init (e.g. /bin/bash)

 acpi=off # disable power saving
subsystem

 console=ttyS0 # set serial port as
the default terminal

 debug # enable debug mode

 initrd=/boot/initrd.gz # set initial
ramdisk

 mem=1024M # alternative
configuration of available
memory

 noapic # disable APIC subsystem

 nousb # disable USB subsytem

Start-up procedure of a Linux system

1. The BIOS (or UEFI) starts first and when POST is run, and the
hardware is initialized, it detects the boot device

2. The BIOS finds the boot sector and boots the bootloader:

1. Stage 1: Load the basic boot loader
2. Stage 1.5: (optional) load file system drivers
3. Stage 2: loads the full blown boot loader from /boot/grub

3. The bootloader loads the operating system chosen in the menu or the
default entry

4. If the chosen system is Linux the kernel is loaded from
/boot/vmlinuz-<kernel-version>.

5. The kernel load the init program which enters the default runlevel.

6. The system enters the default runlevel and all services configured
under it will start

http://xkcd.org/340/

Kernel and Initial Ramdisk (initrd)

 $ ls -la /boot/vmlinuz-* # show kernel files

-rw------- 1 root root 8249080 Apr 24 07:42 /boot/vmlinuz-4.15.0-20-generic
-rw------- 1 root root 8257272 May 23 20:49 /boot/vmlinuz-4.15.0-23-generic
-rw------- 1 root root 8257272 Jun 13 11:33 /boot/vmlinuz-4.15.0-24-generic

 $ ls -lah /boot/initrd* # show initial ramdisk files

-rw-r--r-- 1 root root 56M Jun 30 08:10 /boot/initrd.img-4.15.0-20-generic
-rw-r--r-- 1 root root 57M Jun 30 08:11 /boot/initrd.img-4.15.0-23-generic
-rw-r--r-- 1 root root 57M Jul 3 10:05 /boot/initrd.img-4.15.0-24-generic

 The vmlinuz-* files are the available kernels. Usually the most
recent is loaded. We can load older kernels from the GRUB menu
if the most recent kernel is broken for some reason. We can
identify the version of the running kernel with uname -r

 The initrd-* files are the available initial ramdisk that contain all the
device drivers necessary for startup. Their versions match those of
the kernel files. Each respective initrd for each kernel is
temporarily loaded in memory, the necessary drivers are loaded
and when startup is complete it is unloaded from memory. A
missing initrd can cause a kernel panic which is a failed startup!

The Linux Kernel
 Started as a hobby project from Linus Torvalds
 It is now developed by the Linux Foundation
 Monolithic Architecture
 It can be extended using modules
 It is a collaborative project with the participation of

more then 200 companies
 Supports almost all legacy and modern CPU

architectures

 When there is a kernel upgrade the old kernel is
usually available

 You need a restart to launch a new kernel
 There is a livepatch module that allows the

patching of a loaded kernel!
 Every specific kernel has its own modules under

/lib/modules in a subdirectory named after the
kernel version

The Linux Kernel

http://xkcd.org/456/

Kernel Messages

 $ dmesg | less # show all kernel
messages

 $ dmesg | tail -n20 # show the 20
most recent kernel messages

 Kernel messages provide valuable information
about the running kernel, as well as information
about the CPU, the memory, system devices,
modules, partitions etc

Log Files for system messages

 /var/log/messages # this is the main system log file
that records kernel ans general system messages

 /var/log/syslog # has replaced /var/log/messages in
some distributions

 $ tail -f -n30 /var/log/messages #
watch live events as they come in
the main log file

Init systems

 Init systems are responsible for the initialization of a Linux
system and service startup

 In modern Linux systems you can find mainly two init systems:
 System V init (sysvinit): legacy init system for Linux

systems
 systemd: a more powerful init system with concurrent

services startup and service management
 In old Ubuntu systems (version 14.04 and back) you can find

the Upstart init system which is also a prominent sysvinit
alternative

 After the kernel is loaded the init executable is called
(/sbin/init)

 After init is run the init system will initialize the system and
start the services

sysvinit vs systemd

 sysvinit:
 Sequential services startup
 Based on scripts under /etc/init.d
 Separates the services into runlevels

 systemd:
 Concurrent services startup
 You can define service dependencies
 Services are monitored and conditionally restarted if

they crash
 Separates the services into targets

License

The work titled ”LPIC-1 101-400 – Lesson 10” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

