

LPIC-1 100-500 – Lesson 3

103.3 Perform basic file management

Introduction

 The UNIX philosophy:

”Everything is a file!”
 The above statement declares that all objects and

structures in the UNIX world, exists in the form
of files, or more correctly, file descriptors.

Copy files with `cp`

 $ cp file1 file1.bak # backup file1

 $ cp ../file1 . # copy file1 from
parent directory to current directory

Options:

 -a # archive (preserve file attributes)

 -f # force overwrite destination file,
if exists

 -r, -R # copy recursively including
sub-directories

 -i # interactively confirm if you want
the destination file to be overwritten

Create directories with `mkdir`

 $ mkdir dir1 dir2 # create
directories dir1 and dir2

Options:
 -p # create hierarchy of

directories, e.g.:

 -m 750 # create directory with
permission 750 (octal)

Move/Rename with `mv`

 $ mv name1 name2 # rename name1 to
name2

 $ mv ../name1 . # move name1 from the
parent directory to the current

 $ mv /tmp/name1 ~/name2 # move name1 to
your home directory and rename to
name2

Options:

 -f # force overwrite destination file,
if exists

 -i # interactively confirm if you want
the destination file to be overwritten

Display files/directories with `ls`

 $ ls # Display files/directories
in the current directory

 $ ls -la dir1 # detailed view of
normal and hidden files and
directories in the dir1 directory

 $ ls -la .bashrc # whatever starts
with "." is a hidden file

-rw------- 1 theo theo 3353 2011-
04-29 13:29 .bashrc

Display files/directories with `ls`

 $ ls -la .bashrc

 -rw------- 1 theo theo 3353 2011-04-29 13:29 .bashrc
 ^ ^ ^ ^ ^ ^ ^
| | | | | | `filename
| | | | | `datetime
| | | | `file size in bytes
| | | `group
| | `owner
| `number of hard links
 `file type (d for directories) and permissions

 drwxr-xr-x 144 root root 12288 2011-08-22 17:21 etc

Display files/directories with `ls`

^
 `the first character of the sequence, declares the file type

Code Description

- Regular file

d Directory

l Symbolic Link: a file pointing to another file

p Named pipe: used in inter process communication

s Socket: used in network inter-communication

b Block Device: files that represent devices where data flows in blocks larger than
a byte, e.g. Hard Disks, CD-ROM, etc

c Character Device: files that represent devices where data flows in one byte at a
time, e.g. terminals, I/O ports, etc

Options:

 -l # display file in the long listing
format

 -a, --all # display hidden files as
well as normal

 -R # recursive listing of
files/directories

 -h # display size in human readable
format, e.g. 3K 24M, 2.3G

 -d # display information about
directories instead of the content of
directories

Display files/directories with `ls`

 -F # display in this format:
“*/=>@|”

no symbol is for normal files
* Executable
/ Directory
@ Symbolic Link
= Socket
| Pipe

Display files/directories with `ls`

Delete files with `rm`
 $ rm file1 file2 # delete (definitively!)

file file1 and file2

Options:

 -d # delete directories when empty

 -f # enforced, non-interactive deletion of
files and directories

 -i # interactively warn the user about the
deleted files or directories

 -r,-R # recursively delete files or
directories

WARNING! Never try this at home (or at work):

rm -rf / # deletes everything!

 $ rmdir dir1 # delete empty
directory dir1

Options:
 -p # delete parent and child

directories,provided they are
empty

Delete directories with `rmdir`

Show file status with `stat`

 $ stat .bash_history # shows useful information
for files

 File: .bash_history
 Size: 433956 Blocks: 848 IO Block:
4096 regular file
Device: fd01h/64769d Inode: 3932171 Links: 1
Access: (0600/-rw-------) Uid: (1000/theo)
Gid: (1000/theo)
Access: 2018-06-23 08:24:41.811736750 +0300
Modify: 2018-06-22 21:56:36.709083485 +0300
Change: 2018-06-23 08:24:41.811736750 +0300

Access: Last Access time

Modify: Last modification of file content

Change: Last modification of file attributes

Change timestamps of files with
`touch`

 $ touch .bash_history # change datetime
with current. As a side-effect it
creates an empty file if the filename
does not exist

Options:

 -a # change only the access time

 -m # change only the modified time

 -t 200302141625 # use different
timestamp than current. The timestamp
format is [[CC]YY]MMDDhhmm[.ss]

Find file type with `file`

 $ file /bin/bash # check the type
of the bash file

 $ file /etc/fstab

 $ file /dev/cdrom
 $ file /dev/sr0

Note: the file extensions in Linux are optional
and not indicative of the actual file type. The file
type is determined by analyzing the file data.

 Process raw data with `dd`
 $ dd if=/dev/sda

of=/media/external/disk.img # clone the
disk /dev/sda to image file disk.img

Options:

 conv=lcase # convert to lower case

 bs=1024 # set block size to 1024 bytes

 count=3000 # set the number of blocks the
process should last

Note: if you set the wrong outfile (of) you can permanently
loose all data on the destination device. Use with caution!

Find files with `find`

 $ find /etc # find all files under
/etc

 $ find / -name fstab # find file
fstab under the root directory
“/”

 $ find /etc -name "*.conf" # find
all ending in .conf under /etc

 $ find /etc -size +4k # find files
bigger than 4 kB

 $ find /usr -size -64M # find
files smaller than 64 ΜB

 $ find /tmp -size +2k -size -4k #
find files between 2kB and 4 kB

 $ find /usr -size 6k # find files
between 5.1 kB and 6 kB

Find files with `find`

 $ find /usr -type f # find all
normal files under /usr

Options:
 -type b # find block devices

 -type c # find character devices

 -type d # find directories

 -type p # find named pipes

 -type l # find symbolic links

 -type s # find sockets

Find files with `find`

 $ find ~ -atime 3 # find files
accessed 3 ago

 $ find ~ -mtime +3 # find files
modified 4 or more days ago

 $ find ~ -ctime -3 # find files
which status changed 4 or more
days ago

Find files with `find`

Find files with `find`

 $ find /tmp -size -4k -ls #
execute ls -l on all found files

 $ find /usr/share -type f -exec
file {} \; # run the file command
 on all regular files

 $ find /tmp -ctime +15 -delete #
delete files older than 15 days

Compress/Decompress files with
`gzip` and `gunzip`

 $ gzip movie.mpg # create a
compressed file movie.mpg.gz

 $ gunzip movie.mpg.gz # decompress
the compressed file to movie.mpg

Options:
 gzip -d # identical gunzip

 -r # recursive compression/
decompression when dealing with
directories

Compress/Decompress files with
`bzip2` and `bunzip2`

 bzip2 is considered a more efficient compression method
than gzip

 $ bzip2 movie.mpg # create compressed
archive movie.mpg.bz2

 $ bunzip2 movie.mpg.bz2 # decompress to
movie.mpg

Options:

 bzip2 -d # identical to bunzip2

 -1 .. -9 # -1 compresses faster but
less efficiently and -9 has a higher
compression ration but slow. Default
is -5

Compress/Decompress files with `xz`
and `unxz`

 xz has an even higher compression ration than either bzip2
or gzip

 $ xz movie.mpg # create compressed
archive movie.mpg.xz

 $ unxz movie.mpg.xz # decompress to
movie.mpg

Options:

 xz -d # identical to unxz

 -1 .. -9 # -1 compresses faster but
less efficiently and -9 has a higher
compression ration but slow. Default
is -5

Archiving with `cpio`

 $ ls . | cpio -ov > dir1.cpio # archive the
contents of current directory to
dir1.cpio

 $ find ~ -mtime +365 | cpio -o > old.cpio #
archive files older than a year

 $ cpio -iv < dir1.cpio # extract data from
the dir1.cpio to current directory

Options:

 -o # create archive

 -i # extract from archive

 -v # verbose display of data

Archiving with `tar`

 $ tar cvf /media/external/backup.tar
/home/user # archive home directory to
backup.tar

 $ tar xvf archive.tar # extract data
from archive.tar to current directory

 $ tar xvf archive.tar -C dir1 # extract
data from archive.tar to directory
dir1

 $ tar cvzf /media/external/backup.tar.gz ~
archive home directory and compress
using gzip (backup.tgz is another
alternative extension)

 $ tar cvf /media/external/backup.tar ~ ;
gzip backup.tar # equivalent to the
command above

 $ tar cvjf /media/external/backup.tar.bz2 ~
archiving and compression using bzip2
(backup.tbz2 is an alternative extension)

 $ tar cvJf /media/external/backup.tar.xz ~
archiving and compression using xz
(backup.txz is an alternative extension)

Archiving with `tar`

Archiving with `tar`

 $ tar xvzf /media/external/backup.tar.gz #
extract and uncompress with gzip of
backup.tar.gz to current directory

 $ gunzip /media/external/backup.tar.gz ;
tar xvf backup.tar # equivalent to above

 $ tar xvjf /media/external/backup.tar.bz2
-C data # extract and uncompress with
bzip2 of backup.tar.bz2 to the data
directory

 $ tar xvJf /media/external/backup.tar.xz
-C data # extract and uncompress with xz
of backup.tar.xz to the data directory

 $ tar tvzf backup.tar.gz # show
contents of backup.tar.gz

Options (dashes are optional)

 -c # create archive

 -x # extract archive tar

 -t # display contents of archive

 -v # verbose output

 -z # use gzip to (de)compress

 -j # use bzip2 to (de)compress

 -J # use xz to (de)compress

Archiving with `tar`

 $ tar --one-file-system cf /dev/st0 / #
backup the root directory to the
magnetic tape drive /dev/st0 without
leaving the “/” filesystem

 $ tar xf /dev/st0 -C / # recover the
data from the tape to the root
directory

Backup to a tape drive with `tar`

”Nobody cares if you can backup, only if you can restore”
~ Ancient UNIX Proverb ~

”Only wimps use tape backup: real men just upload their
important stuff on ftp, and let the rest of the world mirror it!”

~ Linus Torvalds ~

 The Shell has the option of matching File
Names using wildcards

 If we want to use the wildcard characters
literary they have to be embraced in " " or '
' or be ‘escaped’ using ‘\’

 The difference between double quotes (" ")
and single quotes (' ') is that double quotes
return the value of shell/environment
variables while single quotes interpret those
literary

File Globbing

Wildcard Description

* Match 0 or more characters

? Match exactly one character

[char] Match exactly one character, to the characters
embraced in square brackets

[!char] Match exactly one character, to the characters NOT
embraced in square brackets

[a-z] Match exactly one character, to the characters from a
to z (lower case)

[!a-z] Match exactly one character, NOT to the characters
from a to z (lower case)

{string1,string2,string3,...} Match a string with one of the strings embraced in
curly brackets

File Globbing

 $ ls /etc/*.co* # matches files
names containing .co

 $ cp /etc/*.c? . # copy all files
which their extension start with
c and followed by any single
character e.g. /etc/bogofilter.cf

 $ ls -ld .??* # display all hidden
files with at least two
characters in their name

File Globbing

 $ mkdir dir with space # this will
create three different directories

 $ rmdir dir with space # remove three
different directories

 $ mkdir "dir with space" # create a
directory with spaces in its name

 $ rmdir dir\ with\ space # backslash
“\” “escapes” and so the whole
expression references the directory

 $ rmdir 'dir with space' # remove a
directory with spaces in its name

File Globbing

 $ touch semicolon\; # create file
semicolon; (the ‘;’is part of the name)

 $ rm semicolon\; # delete file semicolon;

 $ touch backslash\\ # create file
backslash\

 $ rm backslash\\ # delete file backslash\

 $ echo "my home is $HOME" # print my home
is /home/user

 $ echo 'my home is $HOME' # print my home
is $HOME

File Globbing

License

The work titled ”LPIC-1 101-500 – Lesson 3” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

