
  

LPIC-1 100-500 – Lesson 3

103.3 Perform basic file management



  

Introduction

 The UNIX philosophy:

”Everything is a file!”
 The above statement declares that all objects and 

structures in the UNIX world, exists in the form 
of files, or more correctly, file descriptors.



  

Copy files with `cp`

 $ cp file1 file1.bak # backup file1

 $ cp ../file1 . # copy file1 from 
parent directory to current directory

Options:

 -a # archive (preserve file attributes)

 -f # force overwrite destination file, 
if exists

 -r, -R # copy recursively including 
sub-directories

 -i # interactively confirm if you want 
the destination file to be overwritten



  

Create directories with `mkdir`

 $ mkdir dir1 dir2 # create 
directories dir1 and dir2

Options:
 -p # create hierarchy of 

directories, e.g.:

 -m 750 # create directory with 
permission 750 (octal)



  

Move/Rename with `mv`

 $ mv name1 name2 # rename name1 to 
name2

 $ mv ../name1 . # move name1 from the 
parent directory to the current

 $ mv /tmp/name1 ~/name2 # move name1 to 
your home directory and rename to 
name2

Options:

 -f # force overwrite destination file, 
if exists

 -i # interactively confirm if you want 
the destination file to be overwritten



  

Display files/directories with `ls`

 $ ls # Display files/directories 
in the current directory

 $ ls -la dir1 # detailed view of 
normal and hidden files and 
directories in the dir1 directory

 $ ls -la .bashrc # whatever starts 
with "." is a hidden file

-rw------- 1 theo theo 3353 2011-
04-29 13:29 .bashrc



  

Display files/directories with `ls`

 $ ls -la .bashrc

 -rw------- 1 theo theo 3353 2011-04-29 13:29 .bashrc
  ^        ^   ^   ^  ^         ^       ^ 
|        |   |   |  |         |        `filename
|        |   |   |  |          `datetime
|        |   |   |   `file size in bytes
|        |   |    `group
|        |    `owner
|         `number of hard links
 `file type (d for directories) and permissions



  

 drwxr-xr-x 144 root root 12288 2011-08-22 17:21 etc

Display files/directories with `ls`

^
 `the first character of the sequence, declares the file type

Code Description

- Regular file

d Directory

l Symbolic Link: a file pointing to another file

p Named pipe: used in inter process communication

s Socket: used in network inter-communication

b Block Device: files that represent devices where data flows in blocks larger than 
a byte, e.g. Hard Disks, CD-ROM, etc

c Character Device: files that represent devices where data flows in one byte at a 
time, e.g. terminals, I/O ports, etc



  

Options:

 -l # display file in the long listing 
format

 -a, --all # display hidden files as 
well as normal

 -R # recursive listing of 
files/directories

 -h # display size in human readable 
format, e.g. 3K 24M, 2.3G

 -d # display information about 
directories instead of the content of 
directories

Display files/directories with `ls`



  

 -F # display in this format: 
“*/=>@|”

no symbol is for normal files
* Executable
/ Directory
@ Symbolic Link
= Socket
| Pipe

Display files/directories with `ls`



  

Delete files with `rm`
 $ rm file1 file2 # delete (definitively!) 

file file1 and file2

Options:

 -d # delete directories when empty

 -f # enforced, non-interactive deletion of 
files and directories

 -i # interactively warn the user about the 
deleted files or directories

 -r,-R # recursively delete files or 
directories

WARNING! Never try this at home (or at work):

rm -rf / # deletes everything!



  

 $ rmdir dir1 # delete empty 
directory dir1

Options:
 -p # delete parent and child 

directories,provided they are 
empty

Delete directories with `rmdir`



  

Show file status with `stat`

 $ stat .bash_history # shows useful information 
for files

  File: .bash_history
  Size: 433956    Blocks: 848        IO Block: 
4096   regular file
Device: fd01h/64769d Inode: 3932171     Links: 1
Access: (0600/-rw-------)  Uid: ( 1000/theo) 
Gid: ( 1000/theo)
Access: 2018-06-23 08:24:41.811736750 +0300
Modify: 2018-06-22 21:56:36.709083485 +0300
Change: 2018-06-23 08:24:41.811736750 +0300

# Access: Last Access time

# Modify: Last modification of file content

# Change: Last modification of file attributes



  

Change timestamps of files with 
`touch`

 $ touch .bash_history # change datetime 
with current. As a side-effect it 
creates an empty file if the filename 
does not exist

Options:

 -a # change only the access time

 -m # change only the modified time

 -t 200302141625 # use different 
timestamp than current. The timestamp 
format is [[CC]YY]MMDDhhmm[.ss]



  

Find file type with `file`

 $ file /bin/bash # check the type 
of the bash file

 $ file /etc/fstab

 $ file /dev/cdrom
 $ file /dev/sr0

Note: the file extensions in Linux are optional 
and not indicative of the actual file type. The file 
type is determined by analyzing the file data.



  

 Process raw data with `dd`
 $ dd if=/dev/sda 

of=/media/external/disk.img # clone the 
disk /dev/sda to image file disk.img

Options:

 conv=lcase # convert to lower case

 bs=1024 # set block size to 1024 bytes

 count=3000 # set the number of blocks the 
process should last

Note: if you set the wrong outfile (of) you can permanently 
loose all data on the destination device. Use with caution!



  

Find files with `find`

 $ find /etc # find all files under 
/etc

 $ find / -name fstab # find file 
fstab under the root directory 
“/”

 $ find /etc -name "*.conf" # find 
all ending in .conf under /etc



  

 $ find /etc -size +4k # find files 
bigger than 4 kB

 $ find /usr -size -64M # find 
files smaller than 64 ΜB 

 $ find /tmp -size +2k -size -4k # 
find files between 2kB and 4 kB 

 $ find /usr -size 6k # find files 
between 5.1 kB and 6 kB

Find files with `find`



  

 $ find /usr -type f # find all 
normal files under /usr

Options:
 -type b # find block devices

 -type c # find character devices

 -type d # find directories

 -type p # find named pipes

 -type l # find symbolic links

 -type s # find sockets

Find files with `find`



  

 $ find ~ -atime 3 # find files 
accessed 3 ago

 $ find ~ -mtime +3 # find files 
modified 4 or more days ago

 $ find ~ -ctime -3 # find files 
which status changed 4 or more 
days ago

Find files with `find`



  

Find files with `find`

 $ find /tmp -size -4k -ls # 
execute ls -l on all found files

 $ find /usr/share -type f -exec 
file {} \; # run the file command 
 on all regular files

 $ find /tmp -ctime +15 -delete # 
delete files older than 15 days



  

Compress/Decompress files with 
`gzip` and `gunzip`

 $ gzip movie.mpg # create a 
compressed file movie.mpg.gz

 $ gunzip movie.mpg.gz # decompress 
the compressed file to movie.mpg

Options:
 gzip -d # identical gunzip

 -r # recursive compression/ 
decompression when dealing with 
directories



  

Compress/Decompress files with 
`bzip2` and `bunzip2`

 bzip2 is considered a more efficient compression method 
than gzip

 $ bzip2 movie.mpg # create compressed 
archive movie.mpg.bz2

 $ bunzip2 movie.mpg.bz2 # decompress to 
movie.mpg

Options:

 bzip2 -d # identical to bunzip2

 -1 .. -9 # -1 compresses faster but 
less efficiently and -9 has a higher 
compression ration but slow. Default 
is -5



  

Compress/Decompress files with `xz` 
and `unxz`

 xz has an even higher compression ration than either bzip2 
or gzip

 $ xz movie.mpg # create compressed 
archive movie.mpg.xz

 $ unxz movie.mpg.xz # decompress to 
movie.mpg

Options:

 xz -d # identical to unxz

 -1 .. -9 # -1 compresses faster but 
less efficiently and -9 has a higher 
compression ration but slow. Default 
is -5



  

Archiving with `cpio`

 $ ls . | cpio -ov > dir1.cpio # archive the 
contents of current directory to 
dir1.cpio

 $ find ~ -mtime +365 | cpio -o > old.cpio # 
archive files older than a year

 $ cpio -iv < dir1.cpio # extract data from 
the dir1.cpio to current directory

Options:

 -o # create archive

 -i # extract from archive

 -v # verbose display of data



  

Archiving with `tar`

 $ tar cvf /media/external/backup.tar 
/home/user # archive home directory to 
backup.tar

 $ tar xvf archive.tar # extract data 
from archive.tar to current directory

 $ tar xvf archive.tar -C dir1 # extract 
data from archive.tar to directory 
dir1



  

 $ tar cvzf /media/external/backup.tar.gz ~ 
# archive home directory and compress 
using gzip (backup.tgz is another 
alternative extension)

 $ tar cvf /media/external/backup.tar ~ ; 
gzip backup.tar # equivalent to the 
command above

 $ tar cvjf /media/external/backup.tar.bz2 ~ 
# archiving and compression using bzip2 
(backup.tbz2 is an alternative extension)

 $ tar cvJf /media/external/backup.tar.xz ~ 
# archiving and compression using xz 
(backup.txz is an alternative extension)

Archiving with `tar`



  

Archiving with `tar`

 $ tar xvzf /media/external/backup.tar.gz # 
extract and uncompress with gzip of 
backup.tar.gz to current directory

 $ gunzip /media/external/backup.tar.gz ; 
tar xvf backup.tar # equivalent to above

 $ tar xvjf /media/external/backup.tar.bz2  
-C data # extract and uncompress with 
bzip2 of backup.tar.bz2 to the data 
directory

 $ tar xvJf /media/external/backup.tar.xz   
-C data # extract and uncompress with xz 
of backup.tar.xz to the data directory



  

 $ tar tvzf backup.tar.gz # show 
contents of backup.tar.gz

Options (dashes are optional)

 -c # create archive

 -x # extract archive tar

 -t # display contents of archive

 -v # verbose output 

 -z # use gzip to (de)compress

 -j # use bzip2 to (de)compress

 -J # use xz to (de)compress

Archiving with `tar`



  

 $ tar --one-file-system cf /dev/st0 / # 
backup the root directory to the 
magnetic tape drive /dev/st0 without 
leaving the “/” filesystem

 $ tar xf /dev/st0 -C / # recover the 
data from the tape to the root 
directory

Backup to a tape drive with `tar`

”Nobody cares if you can backup, only if you can restore”
~ Ancient UNIX Proverb ~

”Only wimps use tape backup: real men just upload their 
important stuff on ftp, and let the rest of the world mirror it!”

~ Linus Torvalds ~



  

 The Shell has the option of matching File 
Names using wildcards

 If we want to use the wildcard characters 
literary they have to be embraced in " " or ' 
' or be ‘escaped’ using ‘\’

 The difference between double quotes (" ") 
and single quotes (' ') is that double quotes 
return the value of shell/environment 
variables while single quotes interpret those 
literary

File Globbing



  

Wildcard Description

* Match 0 or more characters

? Match exactly one character

[char] Match exactly one character, to the characters 
embraced in square brackets

[!char] Match exactly one character, to the characters NOT 
embraced in square brackets

[a-z] Match exactly one character, to the characters from a 
to z (lower case)

[!a-z] Match exactly one character, NOT to the characters 
from a to z (lower case)

{string1,string2,string3,...} Match a string with one of the strings embraced in 
curly brackets

File Globbing



  

 $ ls /etc/*.co* # matches files 
names containing .co

 $ cp /etc/*.c? . # copy all files 
which their extension start with 
c and followed by any single 
character e.g. /etc/bogofilter.cf

 $ ls -ld .??* # display all hidden 
files with at least two 
characters in their name 

File Globbing



  

 $ mkdir dir with space # this will 
create three different directories

 $ rmdir dir with space # remove three 
different directories

 $ mkdir "dir with space" # create a 
directory with spaces in its name

 $ rmdir dir\ with\ space # backslash 
“\” “escapes” and so the whole 
expression references the directory

 $ rmdir 'dir with space' # remove a 
directory with spaces in its name

File Globbing



  

 $ touch semicolon\; # create file 
semicolon; (the ‘;’is part of the name)

 $ rm semicolon\; # delete file semicolon;

 $ touch backslash\\ # create file 
backslash\

 $ rm backslash\\ # delete file backslash\

 $ echo "my home is $HOME" # print my home 
is /home/user

 $ echo 'my home is $HOME' # print my home 
is $HOME

File Globbing



  

License

The work titled ”LPIC-1 101-500 – Lesson 3” by 
Theodotos Andreou is distributed with the 

Creative Commons Attribution ShareAlike 4.0 
International License.
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