

LPIC-1 101-500 – Lesson 11

101.3 Change runlevels / boot targets
and shutdown or reboot system

System V Init Runlevels

 The term runlevel refers to different modes of
operation of UNIX and Linux systems that use
System V init.

 In the recent past most Linux distros used System V
init. Some are still using it (Slackware, Gentoo).

 Recent versions of popular Linux distros have
replaced System V init:

 systemd: Fedora 15, CentOS 6, Debian 8, Ubuntu
16.04 and newer

 upstart: Ubuntu 9.10 until 14.04

Typical Runlevels in Linux
(Linux Standard Base – Red Hat)

ID Name Description

0 Halt Power System Off

1,s,S Single-User Mode Recovery and admin mode. Used to
repair corrupted filesystems, recover lost
or corrupted files, recover root password,
backup system etc. Network is inactive

2 Multi-User Mode This mode supports multiple users, but
networking and network interface cards
are disabled

3 Multi-User Mode with Networking Normal multiuser operation with
networking enabled but no GUI

4 Unused/User Defined For special cases

5 Multiuser with Networking and GUI Normal multiuser operation with
networking and GUI

6 Reboot System Reboot

Runlevels in Legacy Debian/Ubuntu
and Derivatives

ID Name Description

0 Halt Power System Off

1,s,S Single-User Mode Recovery and admin mode. Used to
repair corrupted filesystems recover lost
or corrupted files, recover root password,
backup system etc. Network is inactive

2-5 Multi-user with networking Normal operation with GUI, if available.
The default runlevel is 2

6 Reboot System Reboot

Single-User Mode

 To enter into single user mode, you should pass one of
these kernel parameters: 1, s, S or single.

 For GRUB legacy press: Tab → e → choose kernel
… → e → add the parameter at the end e.g.: s →
Enter → b.

 For GRUB2 press Tab → e → choose linux (or
linux16) → add the parameter at the end e.g.: s →
Ctrl-x.

 To enter into single user mode while the system is active:
init 1 # = init s, = init S

Note: on most systems the GRUB menu already provides
a menuentry for Single User (or “recovery) mode.

The /etc/inittab file

 The /etc/inittab is very important on sysvinit
systems, because it tells init which processes to
run on startup, define the runlevels and
monitoring of critical applications.

 The format of the file is:

<id>:<runlevels>:<action>:<process>
 In modern distributions using systemd or upstart it

is not used.

 # Set default runlevel. 2 for Debian, 3 for RedHat without
GUI, 5 for RedHat with GUI.

id:2:initdefault:
 # Action to be taken on pressing CTRL-ALT-DEL.

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now
 # What to do in single-user mode.

~~:S:wait:/sbin/sulogin

The /etc/inittab file

 # Set the runlevels.

si::sysinit:/etc/init.d/rcS
The following lines define the runlevels (Debian, etc)
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6

 The rc script is responsible for calling the different runlevel scripts.

 In RedHat systems rc is under /etc/rc.d/rc.

The /etc/inittab file

 # Start Terminals tty1 to tty6.

1:2345:respawn:/sbin/getty 38400 tty1
2:23:respawn:/sbin/getty 38400 tty2
3:23:respawn:/sbin/getty 38400 tty3
4:23:respawn:/sbin/getty 38400 tty4
5:23:respawn:/sbin/getty 38400 tty5
6:23:respawn:/sbin/getty 38400 tty6

The /etc/inittab file

Important Files for System V init

 /etc/rc.sysinit (RedHat) or /etc/init.d/rcS (Debian):
Prepare the system for startup. Executes before
any other services.

 /etc/rc, /etc/rc.d/rc (RedHat), /etc/init.d/rc
(Debian): Used for changing runlevels.

 /etc/rc.local: used for admin defined processes. The
last script executed.

 /etc/rc.d/init.d (RedHat), /etc/init.d (Debian): Here
we find the stop and start scripts of the various
services.

 /etc/rc[0-6].d: here we find various symlinks, back
to /etc/init.d scripts, which defines the stopped
and and started services at each runlevel.

Important Directories for System V
init

Managing services/daemons in
System V init

 All the management scripts are under /etc/init.d:

ls -la /etc/init.d

 # /etc/init.d/ssh stop # stop the sshd
daemon

 # /etc/init.d/ssh start # start the sshd
daemon

 # /etc/init.d/ssh restart # restart the
sshd daemon

 # /etc/init.d/ssh reload # reload
configuration files for sshd (SIGHUP)

 # /etc/init.d/ssh status # status of the
sshd daemon (active, inactive)

 # service <daemon> (start | stop | restart
| reload | status) # works in RedHat as
well as recent versions of Debian/Ubuntu.

 # invoke-rc.d <daemon> (start | stop |
restart | reload | status) # for
Debian/Ubuntu and derivatives.

Managing services/daemons in
System V init

The directories /etc/rc[0-6].d
 $ ls -la /etc/rc[0-6].d # contain all the symbolic links to

/etc/init.d script that defines what starts and what stops
at each runlevel, e.g.:

/etc/rc1.d:

lrwxrwxrwx 1 root root 17 2011-09-03 15:26 K09apache2
-> ../init.d/apache2

lrwxrwxrwx 1 root root 20 2011-08-27 08:21
K15pulseaudio -> ../init.d/pulseaudio

lrwxrwxrwx 1 root root 22 2011-08-27 08:19 K20acpi-
support -> ../init.d/acpi-support
…
-rw-r--r-- 1 root root 369 2009-09-07 21:58 README
lrwxrwxrwx 1 root root 19 2011-08-27 07:52
S30killprocs -> ../init.d/killprocs

lrwxrwxrwx 1 root root 19 2011-08-27 08:19 S70dns-
clean -> ../init.d/dns-clean

 lrwxrwxrwx 1 root root 16 2011-
08-27 07:52 S90single -> ../init.d/
single

 S is equivalent to /etc/init.d/single start
 K is equivalent to /etc/init.d/single stop
 For enabling or disabling a service we simple rename

the symbolic link from K to S or from S to K
respectively.

 The 90 value sets the execution priority of the scripts.
A smaller value represents a higher priority. The
scripts in sysvinit are executed sequentially.

The directories /etc/rc[0-6].d

The commands `init` and `telinit`

 # init 0 # power system off (runlevel 0).

 # init 6 # reboot system (runlevel 6).

 # init 1 # = init s, init S, enter single
user mode (runlevel 1).

 # init 3 # enter runlevel 3.

 # init 5 # enter runlevel 5.

Note: on sysvinit the /sbin/telinit command is usually a
symbolic link to /sbin/init and behaves in the same way. In
systemd systems init points to systemd and telinit to
systemctl.

Show current runlevel with `runlevel`

 $ runlevel

 S 2 # previous runlevel: Single
 # current runlevel: 2

 2 3 # previous runlevel: 2
 # current runlevel: 3

 N 3 # previous runlevel: None!
 # current runlevel: 3

The systemd init system

 systemd is a more powerful replacement for
sysvinit.

 It provides concurrent startup of services.
 Services can be dependent on the status of other

services.
 Services can be monitored and supervised.
 Separates the system resources into units.
 Replaces scripts with unit configuration files.
 It is backward compatible with sysvinit.
 Lots of other features.

The systemd units
 Unit configuration files live under /lib/systemd/system/

(Debian) or /usr/lib/systemd/system/.

 Enabled (on startup) and custom unit configuration files are
placed under /etc/systemd/system/.

 Unit types:

 <name>.service: for services
 <name>.socket: for IPC sockets or FIFO buffers
 <name>.device: for systemd managed devices
 <name>.mount: for systemd managed mount points
 <name>.target: for boot targets (similar to runlevels)
 Lots of other unit types:
 .automount, .swap, .path, .timer, .snapshot, .slice, .scope

An example systemd service file

 $ cat /lib/systemd/system/myservice.service

[Unit]
Description=Myservice Description # Service Description.
After=postgresql.service # start after postgresql service.

[Service]
EnvironmentFile=-/etc/default/myservice # read environment
 # vars from here.
WorkingDirectory=/srv/myservice # service working directory.
ExecStart=/usr/sbin/myservice -r $OPTS # the cli command to
 # run our service.
KillMode=process # kill only the main process on stop
Restart=on-failure # Restart the services if it fails or
 # crashes.

[Install]
WantedBy=multi-user.target # this service is called my the
 # multi-user target (equivalent
 # to the multi-user runlevel of
 # sysvinit.

The `systemctl` command

 systemd behavior is controlled with the systemctl command.

 $ systemctl list-units --type=service #
list all systemd services.

 $ systemctl list-units --type=service --
state=running # list all running
services.

 $ systemctl list-units --type=target # list
all targets.

 $ systemctl daemon-reload # reload systemd
after a unit file configuration change or
a new file under /etc/systemd/system/.

The `systemctl` command
 $ systemctl enable nginx.service # enable the

nginx service on startup.

 $ systemctl disable nginx.service # disable the
nginx service from startup.

 $ systemctl start nginx.service # start the nginx
service.

 $ systemctl stop nginx.service # stop the nginx
service.

 $ systemctl restart nginx.service # restart the
nginx service.

 $ systemctl reload nginx.service # force the nginx
service to reload its configuration (send
SIGHUP).

 $ systemctl status nginx.service # check the
status of the nginx service.

The `shutdown` command

 # shutdown -h now # initiate
system poweroff without delay.

 # shutdown -r now # initiate
system restart without delay.

 # shutdown -h +10 Please log out
now! # initiate system poweroff
in 10 minutes and notify all
system users.

 # shutdown -r 3:00 # restart at
3:00 in the morning.

Options:

 -h # system halt or poweroff

 -r # system restart

 -k # send warning but without halt or restart

 -f # skip filesystem check (fsck)

 -F # force filesystem check (fsck)

 -t 2 # 2 seconds delay between warning and
sending SIGKILL to processes

The `shutdown` command

Sending messages with `wall`

 wall (warn all) is a utility for sending messages to
all open terminals in a system.

 $ wall "This is the end!" # send
the quoted message to all active
terminals in the system.

The `poweroff`, `halt` and `reboot`
commands

 # poweroff # power system off
without delay.

 # halt # halt system without
delay.

 # reboot # reboot system without
delay.

License

The work titled ”LPIC-1 101-500 – Lesson 11” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

