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101.3 Change runlevels / boot targets 
and shutdown or reboot system



  

System V Init Runlevels

 The term runlevel refers to different modes of 
operation of UNIX and Linux systems that use 
System V init.

 In the recent past most Linux distros used System V 
init. Some are still using it (Slackware, Gentoo).

 Recent versions of popular Linux distros have 
replaced System V init:

 systemd: Fedora 15, CentOS 6, Debian 8, Ubuntu 
16.04 and newer

 upstart: Ubuntu 9.10 until 14.04



  

Typical Runlevels in Linux 
(Linux Standard Base – Red Hat)

ID Name Description

0 Halt Power System Off

1,s,S Single-User Mode Recovery and admin mode. Used to 
repair corrupted filesystems, recover lost 
or corrupted files, recover root password, 
backup system etc. Network is inactive

2 Multi-User Mode This mode supports multiple users, but 
networking and network interface cards 
are disabled

3 Multi-User Mode with Networking Normal multiuser operation with 
networking enabled but no GUI

4 Unused/User Defined For special cases

5 Multiuser with Networking and GUI Normal multiuser operation with 
networking and GUI

6 Reboot System Reboot



  

Runlevels in Legacy Debian/Ubuntu 
and Derivatives

ID Name Description

0 Halt Power System Off

1,s,S Single-User Mode Recovery and admin mode. Used to 
repair corrupted filesystems recover lost 
or corrupted files, recover root password, 
backup system etc. Network is inactive

2-5 Multi-user with networking Normal operation with GUI, if available. 
The default runlevel is 2

6 Reboot System Reboot



  

Single-User Mode

 To enter into single user mode, you should pass one of 
these kernel parameters: 1, s, S or single.

 For GRUB legacy press: Tab → e → choose kernel 
… → e → add the parameter at the end e.g.: s → 
Enter → b.

 For GRUB2 press Tab → e →  choose linux (or 
linux16) → add the parameter at the end e.g.: s → 
Ctrl-x.

 To enter into single user mode while the system is active:
# init 1 # = init s, = init S

Note: on most systems the GRUB menu already provides 
a menuentry for Single User (or “recovery) mode.



  

The /etc/inittab file

 The /etc/inittab is very important on sysvinit 
systems, because it tells init which processes to 
run on startup, define the runlevels and 
monitoring of critical applications.

 The format of the file is: 

<id>:<runlevels>:<action>:<process>
 In modern distributions using systemd or upstart it 

is not used.



  

 # Set default runlevel. 2 for Debian, 3 for RedHat without 
GUI, 5 for RedHat with GUI.

id:2:initdefault:
 # Action to be taken on pressing CTRL-ALT-DEL.

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now
 # What to do in single-user mode.

~~:S:wait:/sbin/sulogin

The /etc/inittab file



  

 # Set the runlevels.

si::sysinit:/etc/init.d/rcS
# The following lines define the runlevels (Debian, etc)
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6

 The rc script is responsible for calling the different runlevel scripts.

 In RedHat systems rc is under /etc/rc.d/rc.

The /etc/inittab file



  

 # Start Terminals tty1 to tty6.

1:2345:respawn:/sbin/getty 38400 tty1
2:23:respawn:/sbin/getty 38400 tty2
3:23:respawn:/sbin/getty 38400 tty3
4:23:respawn:/sbin/getty 38400 tty4
5:23:respawn:/sbin/getty 38400 tty5
6:23:respawn:/sbin/getty 38400 tty6

The /etc/inittab file



  

Important Files for System V init

 /etc/rc.sysinit (RedHat) or /etc/init.d/rcS (Debian):
Prepare the system for startup. Executes before 
any other services.

 /etc/rc, /etc/rc.d/rc (RedHat), /etc/init.d/rc 
(Debian): Used for changing runlevels.

 /etc/rc.local: used for admin defined processes. The 
last script executed.



  

 /etc/rc.d/init.d (RedHat), /etc/init.d (Debian): Here 
we find the stop and start scripts of the various 
services.

 /etc/rc[0-6].d: here we find various symlinks, back 
to /etc/init.d scripts, which defines the stopped 
and and started services at each runlevel.

Important Directories for System V 
init



  

Managing services/daemons in 
System V init

 All the management scripts are under /etc/init.d:

# ls -la /etc/init.d

 # /etc/init.d/ssh stop # stop the sshd 
daemon

 # /etc/init.d/ssh start # start the sshd 
daemon

 # /etc/init.d/ssh restart # restart the 
sshd daemon

 # /etc/init.d/ssh reload # reload 
configuration files for sshd (SIGHUP)

 # /etc/init.d/ssh status # status of the 
sshd daemon (active, inactive)



  

 # service <daemon> (start | stop | restart 
| reload | status) # works in RedHat as 
well as recent versions of Debian/Ubuntu.

 # invoke-rc.d <daemon> (start | stop | 
restart | reload | status) # for 
Debian/Ubuntu and derivatives.

Managing services/daemons in 
System V init



  

The directories /etc/rc[0-6].d
 $ ls -la /etc/rc[0-6].d # contain all the symbolic links to 

/etc/init.d script that defines what starts and  what stops 
at each runlevel, e.g.:

/etc/rc1.d:

lrwxrwxrwx   1 root root    17 2011-09-03 15:26 K09apache2 
-> ../init.d/apache2

lrwxrwxrwx   1 root root    20 2011-08-27 08:21 
K15pulseaudio -> ../init.d/pulseaudio

lrwxrwxrwx   1 root root    22 2011-08-27 08:19 K20acpi-
support -> ../init.d/acpi-support
…
-rw-r--r--   1 root root   369 2009-09-07 21:58 README
lrwxrwxrwx   1 root root    19 2011-08-27 07:52 
S30killprocs -> ../init.d/killprocs

lrwxrwxrwx   1 root root    19 2011-08-27 08:19 S70dns-
clean -> ../init.d/dns-clean



  

 lrwxrwxrwx   1 root root    16 2011-
08-27 07:52 S90single -> ../init.d/
single

 S is equivalent to /etc/init.d/single start
 K is equivalent to /etc/init.d/single stop
 For enabling or disabling a service we simple rename 

the symbolic link from K to S or from S to K 
respectively.

 The 90 value sets the execution priority of the scripts. 
A smaller value represents a higher priority. The 
scripts in sysvinit are executed sequentially.

The directories /etc/rc[0-6].d



  

The commands `init` and `telinit`

 # init 0 # power system off (runlevel 0).

 # init 6 # reboot system (runlevel 6).

 # init 1 # = init s, init S, enter single 
user mode (runlevel 1).

 # init 3 # enter runlevel 3.

 # init 5 # enter runlevel 5.

Note: on sysvinit the /sbin/telinit command is usually a 
symbolic link to /sbin/init and behaves in the same way. In 
systemd systems init points to systemd and telinit to 
systemctl.



  

Show current runlevel with `runlevel`

 $ runlevel

 S 2 # previous runlevel: Single
   # current runlevel: 2

 2 3 # previous runlevel: 2
   # current runlevel: 3

 N 3 # previous runlevel: None!
   # current runlevel: 3



  

The systemd init system

 systemd is a more powerful replacement for 
sysvinit.

 It provides concurrent startup of services.
 Services can be dependent on the status of other 

services.
 Services can be monitored and supervised.
 Separates the system resources into units.
 Replaces scripts with unit configuration files.
 It is backward compatible with sysvinit.
 Lots of other features.



  

The systemd units
 Unit configuration files live under /lib/systemd/system/ 

(Debian) or /usr/lib/systemd/system/.

 Enabled (on startup) and custom unit configuration files are 
placed under /etc/systemd/system/.

 Unit types:

 <name>.service: for services
 <name>.socket: for IPC sockets or FIFO buffers
 <name>.device: for systemd managed devices
 <name>.mount: for systemd managed mount points
 <name>.target: for boot targets (similar to runlevels)
 Lots of other unit types: 
 .automount, .swap, .path, .timer, .snapshot, .slice, .scope



  

An example systemd service file

 $ cat /lib/systemd/system/myservice.service 

[Unit]
Description=Myservice Description # Service Description.
After=postgresql.service # start after postgresql service.

[Service]
EnvironmentFile=-/etc/default/myservice # read environment   
                                       # vars from here.
WorkingDirectory=/srv/myservice # service working directory.
ExecStart=/usr/sbin/myservice -r $OPTS # the cli command to  
                                      # run our service.
KillMode=process # kill only the main process on stop
Restart=on-failure # Restart the services if it fails or     
                   # crashes.

[Install]
WantedBy=multi-user.target # this service is called my the
                           # multi-user target (equivalent   
                           # to the multi-user runlevel of 
                           # sysvinit.



  

The `systemctl` command

 systemd behavior is controlled with the systemctl command.

 $ systemctl list-units --type=service # 
list all systemd services.

 $ systemctl list-units --type=service --
state=running # list all running 
services.

 $ systemctl list-units --type=target # list 
all targets.

 $ systemctl daemon-reload # reload systemd 
after a unit file configuration change or 
a new file under /etc/systemd/system/.



  

The `systemctl` command
 $ systemctl enable nginx.service # enable the 

nginx service on startup.

 $ systemctl disable nginx.service # disable the 
nginx service from startup.

 $ systemctl start nginx.service # start the nginx 
service.

 $ systemctl stop nginx.service # stop the nginx 
service.

 $ systemctl restart nginx.service # restart the 
nginx service.

 $ systemctl reload nginx.service # force the nginx 
service to reload its configuration (send 
SIGHUP).

 $ systemctl status nginx.service # check the 
status of the nginx service.



  

The `shutdown` command

 # shutdown -h now # initiate 
system poweroff without delay.

 # shutdown -r now # initiate 
system restart without delay.

 # shutdown -h +10 Please log out 
now! # initiate system poweroff 
in 10 minutes and notify all 
system users.

 # shutdown -r 3:00 # restart at 
3:00 in the morning.



  

Options:

 -h # system halt or poweroff

 -r # system restart

 -k # send warning but without halt or restart

 -f # skip filesystem check (fsck)

 -F # force filesystem check (fsck)

 -t 2 # 2 seconds delay between warning and 
sending SIGKILL to processes

The `shutdown` command



  

Sending messages with `wall`

 wall (warn all) is a utility for sending messages to 
all open terminals in a system.

 $ wall "This is the end!" # send 
the quoted message to all active 
terminals in the system.



  

The `poweroff`, `halt` and `reboot` 
commands

 # poweroff # power system off 
without delay.

 # halt # halt system without 
delay.

 # reboot # reboot system without 
delay.



  

License

The work titled ”LPIC-1 101-500 – Lesson 11” by 
Theodotos Andreou is distributed with the 

Creative Commons Attribution ShareAlike 4.0 
International License.
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