

LPIC-1 101-500 – Lesson 1

103.1 Work on the Command Line
(CLI)

Terminology

 There are many different terms related to the
CLI:

 Shell: the command line interface that
runs in a terminal to execute
commands.

 Terminal: Programs that emulate the
behavior of an old school Unix terminal
(e.g. VT100)

 Console: Synonym to Terminal

Examples of Shells
 bash: the most popular shell in Linux, default for

most systems.
 bsh: a simple shell upon which bash was based on
 dash: combines the speed of bsh with the

functionality of bash
 csh/tcsh: inspired from C. Fundamentally different

from bash
 ksh: merges elements of bsh and csh
 zsh: a feature-rich and powerful shell

Examples of Terminals

 GNOME Terminal
 Konsole (KDE)
 xterm
 Terminator
 TTYs (Ctrl-Alt-F2 … F6)
 MobaXterm (Windows)
 PuTTY (Windows)
 TeraTerm (Windows)
 Windows Subsystem for Linux - WSL (Windows)

The Shell Prompt
 user@hostname: src$

The ”$” sign implies non privileged user

 root@hostname:~#

The ”#” sign implies privileged user (root)

 echo $PS1

The $PS1 variable (Prompt String 1) defines the shell
form:

[\u@\h \W]\$

explanation: \u: username, \h:hostname \W:basename

 Additional information:

$ man bash # Lookup PROMPTING

Basic Command Syntax

 <command> <command options> <arguments>
e.g.:

$ ls -la src

total 24

drwxrwsr-x 6 root src 4096 2011-06-21 11:34 .

drwxr-xr-x 11 root root 4096 2011-05-29 14:34 .

drwxr-xr-x 4 root root 4096 2011-05-29 14:34 fglrx-
8.840

drwxr-xr-x 24 root root 4096 2011-05-29 14:30 linux-
headers-2.6.38-8

drwxr-xr-x 7 root root 4096 2011-05-29 14:30 linux-
headers-2.6.38-8-generic

drwxr-xr-x 11 root root 4096 2011-06-21 11:34
virtualbox-ose-4.0.4

Builtins and external commands

 Builtin commands are commands provided by the
shell itself, e.g. export, alias, cd etc

 more info: man builtins
 External commands are distinct executable files,

e.g. ls, man, which

more info: man <command>
 There are commands that are both external and

builtin, like echo and pwd

In this case priority goes to builtins

Basic Commands
 cd: change directory

 pwd: print working directory

 echo: print text/variables in
stdout

 export: export variables

 man: manual pages for
commands

 uname: system information

 exec: Execute a file

 type: Show type of command

 which: show path of external
command

 exit: exit current session/shell

 logout: exit current session

 time: calculate execution time

 history: show command
history

 env: show environment
variables

 set: show/set variables

 unset: unset variables

 history: show list of past
commands

Absolute – Relative Paths
 Absolute paths always start with “/”, e.g.:

/home/user/bin

 Relative path start from the current direstory, e.g.:

./bin points to /home/user/bin if you are in /home/user already

 The dot and slash “./” can be omitted, e.g.:

bin points to /home/user/bin if you are in /home/user already

 A double dot and slash “../” is interpreted as “Go back one directory” e.g.:

../user2/bin points to /home/user2/bin if you already in /home/user

 The tilde character “~” and the variable $HOME point to the current user’s
home directory (homedir), e.g.

if the user name is “user” then ~/bin and $HOME/bin point to
/home/user/bin

Command Execution

 First priority goes to builtins.
 Next priority goes to every executable file in the

$PATH, e.g.:

$ echo $PATH
/home/theo/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/us
r/bin: /sbin:/bin:/usr/games

 Directories in the left side are given higher priority
than directories in the right, e.g.
/home/theo/bin/ls has priority over /bin/ls

 $ ls -l /bin/bash

-rwxr-xr-x 1 root root 954896 2011-04-01 00:20 /bin/bash
The x character states that the file /bin/bash is an
executable.

 For commands not included in the $PATH you
should explicitly define the absolute or relative
path, e.g: /usr/lib/gettext/hostname or
./commands/testing

 The exec command can execute other executables
 To execute a command in the current directory we

use “./” e.g.: ./testing
 For successive command execution we can use “;”

e.g.: <cmd1> ; <cmd2> ; <cmd3>

Command Execution

Command Substitution
 We can expand the output of a command to be used as an

argument to another command.
 There are two ways to do this:

$(command) or `command`.
The former is recommended as it is safer when there are
strange meta-characters in the command

 $ echo $HISTFILE # show the file where
the command history is saved

 $ ls -l $(echo $HISTFILE) # The echo
$HISTFILE command is invoked first and
it’s output is passed as an argument
to the ls -l command.

Command Completion

 Bash as well as other shells provide a “command
completion” feature by invoking the “Tab” key

 A single Tab will auto-complete the following
characters, provided they are unique:

$ pass<Tab> → $ passwd

 Two successive Tabs will display other possible
commands, if the set already typed is not unique:

$ pas<Tab><Tab> →
passwd paste pasuspender

 The same logic applies to paths, e.g.:

$ cd /var/lo<Tab><Tab> →
local/ lock/ log/

 $ cd /var/loca<Tab> →
$ cd /var/local/

Note: some systems (like Ubuntu) have extended
this concept to options/parameters completion or
even the file type expected by the command.

Command Completion

Command History

 The history command will return a list with the
most recent commands

 $HISTSIZE: this variable will display the size of
the command history
(default: 1000 commands)

 $HISTFILE: this variable will return the command
history file

 (default: ~/.bash_history)

Command History Expansion

 !! Executes the most recent command
 !n Execute the nth command. We can use the history

command to see the command numbers.
 !-n Execute the nth from the end of the command history.
 !string execute the most recent command starting with the

characters “string”.
 !?string execute the most recent command containing the

characters “string”.
 ^string1^string2 repeat last command, replacing

“string1” with “string2”.
 $ fc edits the most recent command history

Shell Shortcuts

 Ctrl-p Go a command back (also ‘Up Arrow’)

 Ctrl-n Next command (also ‘Down Arrow’)

 Ctrl-b A character backwards (also ‘Left Arrow’)

 Ctrl-f A character forward (also ‘Right Arrow’)

 Ctrl-a Go to the beginning of a line (also ‘Home’)

 Ctrl-e Go to the end of line (also ‘End’)

 Ctrl-t Transpose the character left of the cursor with the character
under the cursor

 Ctrl-l Clear screen but leave the current line to the top of the screen

Note: The Bash shell has the same shortcuts as the Emacs editor

 Meta-< Go to the top of the command history
 Meta-> Go to the bottom of the command history
 Ctrl-d Delete character right of the cursor
 Ctrl-k Delete (kill) the text to the end of line
 Ctrl-y Paste (yank) the deleted text
 Meta-d Delete (kill) the current word
 Ctrl-rtext search text backwards
 Ctrl-stext search text forward
 Ctrl-x Ctrl-e invoke the default text editor

Note: the ‘Meta’ key is usually assigned to the ‘Alt’ key

Shell Shortcuts

Environment and Shell Variables

 $ PROXY=http://proxy.domain.int #
set a Shell variable

 $ export PROXY # export a variable
to child shells
(Environment Variable)

 $ export
PROXY=http://proxy.domain.int #
combine the previous two commands
in one

The `echo` command

 $ echo $PROXY # show the value of the PROXY variable
http://proxy.domain.int

 $ echo "Proxy = $PROXY" # Double quotes expand variable
Proxy = http://proxy.domain.int

 $ echo 'Proxy = $PROXY' # Single quotes show the exact
 string
Proxy = $PROXY

Commands env, set and unset
 The env command will return the list of environment variables:

$ env | more # (press q to exit more)

 The set command will return the list of shell variables:
$ set | less # (press q to exit less)

 $ unset PROXY # unset the variable $PROXY from
the Shell and Environment

 $ set -o # status of shell options

 $ set -o/+o <option> # set/unset shell options

 $ set -o vi # use vi shortcuts instead of
emacs in the bash shell

 $ set +o history # disable the command history

 $ set -o allexport # export all variable to
the Environment

The `uname` command

The uname command will return some useful information
about our system

 $ uname -a # display all available info

 $ uname -r # kernel release

 $ uname -n # machine hostname

 $ uname -v # kernel version and info

 $ uname -o # os name

 $ uname -s # kernel name

 $ uname -m # system architecture

The `which` and `type` commands

 $ which set # no external command named `set`

 $ $ type set # set is a builtin command
set is a shell builtin

 $ which echo # path of echo external command
/usr/bin/echo

 $ type echo # `echo` is builtin AND external
echo is a shell builtin

 $ type ls # ls is in fact an alias
ls is aliased to `ls –color=auto'

 $ \ls # run the unaliased version of `ls`

Getting Help with commands
 Most command support the -h or --help options (or both) for basic

help, e.g.:

 $ ls --help

 $ gzip -h

 The man will give us a more detailed description of the command,
e.g.:

$ man bash

 Some command make use of the info command for an even more
detailed description. info supports hyperlinks. Example:

$ info date

”When all else fails, read the manual”
 ~ Ancient UNIX proverb ~

Section ID Description

1 User Programs and Commands

2 Kernel System Calls

3 Library Calls

4 Devices Files in /dev

5 File Formats

6 Games

7 Various

8 System commands

9 Kernel Routines

Manpages Sections

Using the `man` command
 $ man -wa passwd # show all man files related to passwd

 $ man passwd # displays the first of the 3 pages based on the
priority: 1:8:2:3:4:5:6:7:9

 $ man 1 passwd # shows the man page related to passwd in section 1

 $ man 1ssl passwd # shows the man page related to passwd in
subsection 1ssl

 $ man 5 passwd # shows the man page related to passwd in section 5

 $ man -a passwd # shows successively all man pages named passwd

 $ man -f passwd # (identical to whatis) shows a brief description
of all pages named passwd

 $ man -k passwd # (identical to apropos) shows a brief description
of all pages containing passwd

 $ man -K passwd # shows successively all man pages named
containing passwd in their content

License

The work titled ”LPIC-1 101-500 – Lesson 1” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

