

LPIC-1 101-500 – Lesson 10

101.2 Boot the system

Basic Input/Output System (BIOS)

 BIOS is the basic startup system on PCs (aka
Firmware)

 It is saved in ROM
 Provides the Power On Self Test (POST)
 Provides the initial configuration of devices
 It detects the boot loader and starts the system

 Every vendor has a different interactive environment
 Using the interactive environment we can

 configure devices
 set the time
 enable/disable system devices
 enable/disable peripherals
 set the boot devices
 set security passwords for BIOS and startup

 Most vendors have today replaced the legacy BIOS with
the more powerful UEFI (Unified Extensible Firmware
Interface)

Basic Input/Output System (BIOS)

Show the kernel startup parameters

 $ cat /proc/cmdline # show the kernel
startup parameters

 These parameters can be set by the boot loader
configuration file

 /boot/grub/menu.lst # Legacy GRUB configuration file
 /boot/grub/grub.cfg # GRUB2 configuration file on

Debian and most systems
 /boot/grub2/grub.cfg # GRUB2 configuration file on Red

Hat, CentOS and Fedora

The /etc/default/grub file

 For GRUB2 in most cases do not edit the configuration files directly. Usually there
is a helper configuration file under /etc/default/grub and we can edit startup
parameters in there.

 $ cat /etc/default/grub

GRUB_DEFAULT=0
GRUB_HIDDEN_TIMEOUT=0
GRUB_HIDDEN_TIMEOUT_QUIET=true
GRUB_TIMEOUT=3
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null ||
echo Debian`
GRUB_TERMINAL="console serial"
GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0"
GRUB_CMDLINE_LINUX="

 If we want to add kernel parameters we can add these in the
GRUB_CMDLINE_LINUX variable and then run:
update-grub

Some important kernel parameters

 quiet # hide messages during
startup

 rw # mount root device for read
and write

 ro # mount root device for read-
only

 root=/dev/sda1 # set root
filesystem

 S # enter single user mode
(runlevel 1)

 init=/sbin/init # set alternative
startup program instead of
/sbin/init (e.g. /bin/bash)

 acpi=off # disable power saving
subsystem

 console=ttyS0 # set serial port as
the default terminal

 debug # enable debug mode

 initrd=/boot/initrd.gz # set initial
ramdisk

 mem=1024M # alternative
configuration of available
memory

 noapic # disable APIC subsystem

 nousb # disable USB subsytem

Start-up procedure of a Linux system
1. The BIOS (or UEFI) starts first and when POST is run, and the hardware is

initialized, it detects the boot device

2. The BIOS finds the boot sector and boots the bootloader:

1. Stage 1: Load the basic boot loader

2. Stage 1.5: (optional) load file system drivers

3. Stage 2: loads the full blown boot loader from /boot/grub

3. The bootloader loads the operating system chosen in the menu or the
default entry

4. If the chosen system is Linux the kernel is loaded from /boot/vmlinuz-
<kernel-version>.

5. The kernel load the init program which enters the default runlevel.

6. The system enters the default runlevel and all services configured under it
will start

http://xkcd.org/340/

Kernel and Initial Ramdisk (initrd)
 $ ls -la /boot/vmlinuz-* # show kernel files

-rw------- 1 root root 8249080 Apr 24 07:42 /boot/vmlinuz-4.15.0-20-generic
-rw------- 1 root root 8257272 May 23 20:49 /boot/vmlinuz-4.15.0-23-generic
-rw------- 1 root root 8257272 Jun 13 11:33 /boot/vmlinuz-4.15.0-24-generic

 $ ls -lah /boot/initrd* # show initial ramdisk files

-rw-r--r-- 1 root root 56M Jun 30 08:10 /boot/initrd.img-4.15.0-20-generic
-rw-r--r-- 1 root root 57M Jun 30 08:11 /boot/initrd.img-4.15.0-23-generic
-rw-r--r-- 1 root root 57M Jul 3 10:05 /boot/initrd.img-4.15.0-24-generic

 The vmlinuz-* files are the available kernels. Usually the most recent is
loaded. We can load older kernels from the GRUB menu if the most
recent kernel is broken for some reason. We can identify the version of
the running kernel with uname -r

 The initrd-* files are the available initial ramdisk that contain all the device
drivers necessary for startup. Their versions match those of the kernel
files. Each respective initrd for each kernel is temporarily loaded in
memory, the necessary drivers are loaded and when startup is complete it
is unloaded from memory. A missing initrd can cause a kernel panic
which is a failed startup!

The Linux Kernel
 Started as a hobby project from Linus Torvalds
 It is now developed by the Linux Foundation
 Monolithic Architecture
 It can be extended using modules
 It is a collaborative project with the participation of

more then 200 companies
 Supports almost all legacy and modern CPU

architectures

 When there is a kernel upgrade the old kernel is
usually available

 You need a restart to launch a new kernel
 There is a livepatch module that allows the

patching of a loaded kernel!
 Every specific kernel has its own modules under

/lib/modules in a subdirectory named after the
kernel version

The Linux Kernel

http://xkcd.org/456/

Kernel Messages with `dmesg`

 $ dmesg | less # show all kernel
messages

 $ dmesg | tail -n20 # show the 20
most recent kernel messages

 Kernel messages provide valuable information
about the running kernel, as well as information
about the CPU, the memory, system devices,
modules, partitions etc

System messages with `journalctl`

 journalctl is a relatively new utility on linux systems
that run systemd. It will show all messages (kernel
and user space) after the last boot:

journalctl # print all messages, start from
 top
journalctl -x # print all messages with
 explanatory information
journalctl -e # print all messages, start from
 bottom
journalctl -ex # print all messages, from
 bottom with explanatory info
journalctl -ef # start from bottom and follow
the message as they come to the log

Log Files for system messages

 /var/log/messages # this is the main system log file
that records kernel ans general system messages

 /var/log/syslog # has replaced /var/log/messages in
some distributions

 $ tail -f -n30 /var/log/messages #
watch live events as they come in
the main log file

Init systems

 Init systems are responsible for the initialization of a Linux system
and service startup

 In modern Linux systems you can find mainly two init systems:

 System V init (sysvinit): legacy init system for Linux
systems

 systemd: a more powerful init system with concurrent
services startup and service management

 In old Ubuntu systems (version 14.04 and back) you can find the
Upstart init system which is also a prominent sysvinit alternative

 After the kernel is loaded the init executable is called (/sbin/init)

 After init is run the init system will initialize the system and start the
services

sysvinit vs systemd

 sysvinit:
 Sequential services startup
 Based on scripts under /etc/init.d
 Separates the services into runlevels

 systemd:
 Concurrent services startup
 You can define service dependencies
 Services are monitored and conditionally restarted if

they crash
 Separates the services into targets

License

The work titled ”LPIC-1 101-500 – Lesson 10” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

