LPIC-1102-400 — Lesson 20

110.3 Securing data with encryption

The SSH (Secure Shell) service

Traditionally the TELNET service was used for remote shell
access to other network nodes. This service is insecure by
design, because all information is send in cleartext. No
encryption takes place. This a serious liability in system
security

The SSH service has replaced TELNET in modern systems
because it provides Public-Key Cryptography and thus,
secure communications. There are two versions: version 1
and version 2. The first version does not provide sufficient
security by modern standards, so the use of version 2 is
recommended.

The ssh command is the client that connects to the sshd for
shell access

There also the scp command for secure, network {file transfer

Connect to other network nodes with
“ssh’

= The ssh command is the client side of an SSH system and used for
connecting to other systems over network

= $ ssh useril@example.com # = ssh -1 userl example.com

The authenticity of host 'example.com (10.0.1.50)' can't
be established. _

RSA key fingerprint is
47:e2:fd:2d:62:b8:b4:37:66:b2:c2:d1:59:a5:ab:98.

Are you sure you want to continue connecting (yes/no)?

= By answering “yes” in the question above, the remote host’s public
key will be saved permanently to the ~/.ssh/known_hosts file and
you will not be asked again agout this host. If you answer “ne”
then the connection is dropped and the ~/.ssh/known_hosts file is
not updated

The configuration files for ssh and
sshd

= /etc/ssh/ssh-config # configuration file for the ssh client
Port 22 # the default ssh port
Protocol 2 # connect to SSH hosts using version 2 only!

= /etc/ssh/sshd-config # the sshd daemon configuration file
PermitRootLogin yes # slet to no for disabling remote root
login
PubkeyAuthentication yesg# activate public key
authentication
PasswordAuthentication no # disable password
authentication
Protocol 2 # use SSH version 2 for connections
X11Forwarding yes # support executing graphical
applications via SSH. Disable it if you don’t need it

= /etc/ssh_known_hosts or /etc/ssh/ssh_known_hosts # global
file for known hosts to SSH

Secure file transfer with scp

The scp command is used for the secure transfer of files from the
local host to the remote and vice-versa

$ scp mydoc.odt userl@example.com: # copy file
mydoc.odt to the home directory of userl, 1in
the example.com server. The ":" 1s ver
important because without that, scp behaves
like a local cp

$ scp mydoc.odt userl@example.com:Documents #
copy local file mydoc.odt to d1re¢tor¥
DocuTents under the remote home directory of
user

$ scp userl@example.com:Documents/mydoc.odt
copy remote mydoc.odt from Documents on
the remote home dlrectorX of userl on
example.com, to the local working directory

Public Key Cryptography

= Public-Key Cryptography is an asymmetric cryptography technique
used by SSH, SSL, PGP, GPG etc

= Some of the encryption algorithms are RSA, DSA and ECDSA

= A key generator, produces two keys where we can use the one key to
encrypt cleartext data and the other to decrypt encrypted data. One
key assumes the role of private key, and the other key is the
ublic. The public keg/ can be shared to anybody while the private
ey must be protected.

Image Key
User:KohanX Generation
Wikipedia Program

Public Key Cryptography

Provides confidentiality but not non-repudiability (signing)

Alice's
public key

Alice's
private key

Public Key Cryptography

Provides non-repudiability (signing) but not confidentiality

Alice's
private key

public key

Public and Private SSH keys

= During the initialization of the sshd daemon the host ssh private and
public keys will be created. The default algorithm use is RSA

1s -la /etc/ssh/*key*

-rw------- 1 root root 227 Jun 29 15:58 ssh_host_ecdsa_key
-rw-r--r-- 1 root root 177 Jun 29 15:58 ssh _host ecdsa keX
-rw------- 1 root root 411 Jun 29 15:58 ssh_host_ed25519_key
-rwW-r--r-- 1 root root 97 Jun 29 15:58 ssh_host_ed25519_ key pub
-rwW------- 1 root root 1679 Jun 29 15:58 ssh_host_rsa_key
-rw-r--r-- 1 root root 397 Jun 29 15:58 ssh_host_rsa_key.pub

= When we connect to an SSH service we get its public RSA key so the
SSH client can use that to encrypt the connection

= When you connect to a host for the first time, you are prompted to
accept the public ssh key, and 1f you accept it this will be saved in
the ~/.ssh/known_hosts file for reuse

= [f the SSH public key of a host changes, the system will 1ssue a strict
warning and refuse to connect until you delete the old key from
~/.ssh/known_hosts

SSH Public Key Authentication

= SSH provides various means of authentication. Besides the
traditional username and password authentication, there is also the
Public Key Authentication which is emerging as the best practice
for secure SSH connections

. userl@%?cal:~$ whoami # local user 1s useril
user

= userl@local:~$ ssh-keygen -t rsa -b 2048 # enerate user ssh
ey pair

Generatlng _ubllc/ﬁrlvate rsa kex

Enter file 1n whic to save the e% (/home/userl/ ssh/id_rsa):

Created directory '/home/userl/

Enter passphrase’ (empty for no passphrase)

Enter same passphrase again:

Your identification has been saved in /home/userl/.ssh/id_rsa.

Your public key has been saved in /home/useri/.ssh/id_rsa.pub.

The key fingerprint 1is:

83:40:C4:05739:d8:58:c0:ed:d4:a0:40:6d:87:6c:a4d userl@local

SSH Public Key Authentication

= useri@local:~$ 1s -1 .ssh/ # private and

public keys of userl
-rw------- 1 userl userl 1679 Apr 4 22:35 1d_rsa
-rw-r--r-- 1 userl userl 400 Apr 4 22:35 1id_rsa.pub

= useri@local:~$ cat .ssh/id_rsa.pub | ssh \
user2@remote.dom "xargs -I {} echo {} >> \
.ssh/authorized_keys”™ # append_ the
userl@local.dom pubkey
to the _
.Ssh/authorized_keys
file of user
user2@remote.dom
user2@remote.dom's password: # enter user2 password

HHHH I

= ssh user2@remote.dom # ssh without password!
Last login: Wed Apr 4 22:58:35 2012 from local.dom
user2@remote:~$

= user2@remote:~$ whoami # verify
user?2

SSH Public Key Authentication

= user2@remote:~$ grep userl .ssh/authorized_keys #
o # check authorized keys
ssh-rsa

AAAAB3NzaClyc2EAAAADAQABAAABAQDBATRMHpzJ6NTNOCCB
0JE5XXx1p03e bIIDGnrgm chWJquNSmZZSHzJZfNJZJA6r
dMEt1lcGtl1MgcPclLUgLX

ZL.3Me3d9e9 retlv cicF 4 U/

2m3p ? 1aKv 1oG tthKw ZzJzC+nZNK/

Fd+glIM S PPBbINEW7CcKgYKNn5k0OcV3Th4KAvYwzo
+V1 uHISO lf G xId4m7C+DqMX1uthJ7reYAGNWFlSAh7a
JgVNDtOGAQC743BOBuyTdPrnLtFc1A45mR212P9PU419gYh1Y
o) Lo§ E6oe%1comq/Kchl+HPoYWPDq2EBSCWAmaKLN cb
user oca

= After the Public Key Authentication method is enabled it is
recommended to disable the password authentication, to mitigate
SSH dictionary/brute-force attacks. Because no password is
required, this method is also useful for executing scripts from one
server to another (e.g. backup scripts), for cluster systems or
merely for convenience (password fatigue)

The ssh-keygen command

The ssh-keygen command is used for generating an ssh public/private key
pair for the ssh client or the sshd daemon

$ gggékeygen -1 -f ~/.ssh/id_rsa # show key info
ab:c6:87:06:ea:d6:09;:f6:4d:a9:25:31:e4:a0:fb:df
.ssh/1id_rsa.pub (RSA)

Options:

-b # number of bits. Default 1s 2048. For new
systems 4096 1s recommended

-p # change private key encryption passphrase
-f file # set output file

-C 'some comments' # set key comments

-P 'oldlongpassphrase' # old passphrase

-N 'newlongpassphrase' # new passphrase

Enhance security with ssh-agent

= The problem that occurs if we use an unencrypted
key, is that if our local system is hijacked then the
attacker can login on our remote hosts
effortlessly!

= If we use a passphrase during the key generation
this cannot happen, but we have to enter the
passphrase on every ssh connection!

= The ssh-agent provides a convenient way to use
encrypted keys by providing the passphrase once,
at the first login, and re-using that for the whole
session and resulting child shells

Enhance security with ssh-agent

= $ ssh-keygen -t rsa -b 2048 # generate key pair

Generatlng _ubllc/ervate rsa kex

Enter file 1n which to save the ex (/home/userl/ ssh/id_rsa):
Created directory '/home/userl/

Enter passphrase (empty for no gassphrase) MySecret

Enter same passphrase again: ecret

Your 1identification has been saved in /home/userl/.ssh/id_rsa.
Your public key has been saved in /home/useri/.ssh/id_rsa.pub.
The key fingerprint 1is:
83:40:C4:05739:d8:58:c0:ed:d4:a0:40:6d:87:6c:a4 userl@mypc

= $ ssh-agent /bin/bash # activate ssh-agent in a new shell. To
activate it on a running shell use should use the command
'eval ssh-agent'

= $ ssh-add ~/.ssh/id rsa # add key in ssh-agent. If you simply
EHn 'ssh-add' all keys will be added. You only need to do
1S once.

SSH Port channels (Tunneling)

$ ssh -X user@10.0.1.50 # allows executing
graphical commands on 10.0.1.50 and having the
raphical window on the local machine
?XllForwardlng must be set to yes).

$ ssh -N -f -L 2525:smtp.example.com:25
bob@gate.example.com forward the local 2525
port to the remote 25 port of the server
smtp.example.com using an intermediate proxy
gate.example.com

$ telnet localhost 2525 # this will lead to the 25
of the server smtp.example.com

$ ssh -L 3306:1localhost:3306 bob@mysqgl.example.com

forward the local 3306 port to the remote 3306
port of mysql.example.com

Port forwarding can be a security issue in some environments and so it can
be disabled with AllowTcpForwarding no

"ssh” options

-1 # set user name

-X # execute graphical program from the
remote machine to the local X server

-L # connect a local port to a remote
-R # connect a remote port to a local

-N # do not execute a remote command
(e.g. bash)

-f # send ssh process to the background

-V # verbose output (useful for
debugging)

The gpg encry]?ttlon and signing
11ty

» The GPG (GNU Privacy Guard) utlhtY is used as
an encryption and signing tool for files and emails

= It uses mainly Public Key Cryptography and it was
designed as an alternative to the proprietary PGP
(Pretty Good Privacy)

= It can be used as a standalone utility or be
integrated with other applications like email
clients

The gpg encryption and signing tool

= $ gpg -gen-key # generate a GPG key pair

Please select what kind of key you want:

1) RSA and RSA (default)

2) DSA and Elgamal

3) DSA 51gn only

4) RSA gn only
Your selectlon
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 4096
Re uested ke¥51ze 1S 4096 bits _
Pl ease specl X ow long the key should be valid.

0) ey does not expire

<n> = key explires 1in n days
<n>w = key expires 1in n weeks
<n>m = key expires 1in n months

<n> key ex81res in n years
Key 1s va id for? 5y

Key expires at Tue 04 Apr 2023 12:52:36 AM EEST
Is” this correct? (y/N) y

The gpg encryption and signing tool

Real name: Bob Crg
Email address: crypt@example.com
Comment: Bob the One
You selected thlS USER-ID:
"Bob Crypt (Bob the One) <bob.crypt@example.com>"

Change éN)a (C)omment, %mall or (O)kay/(Q)u1t7 o
You need a Passphrase to’ protect your sécret

gpg: gpg-agent is not available in this session

We need to generate a lot of random bytes. It is a good idea_to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) durlng the prime generation; this gives the random number
generator a better Chance to gain enough éntropy.

The gpg encryption and signing tool

N N i nke ol
el Naizaizats
gpg: /home/bob/.gnupg/trustdb. pg: trustdb created
gpg:_key 1C877AAY9 marked as ultimately trusted
public and secret key created and signed.
gpg: checking the trustdb
gpg: 3 marginal(s) .needed, 1_completeés) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: trust: 0-, 0g, On, Om, Of, 1u
gpg: next trustdb check due at 2017-04-03
pu 4096R/1C877AA9 2012-04-04 [expires: 2@23-04-03;
_ Key fingerprint = 537D E04B 6852 4F7E 5880 AFAC E49A 1815 1C87 7AA9
uid Bob Crypt (Bob the one) <bob.crypt@example.com>

Note that this key cannot be used for enchption. You may want to use
the command "--edit-key" to generate a subkey for this purpose.

The gpg encryption and signing tool

= $ 1s -la .gnupg/

total 1736

drwx------ 5 userl userl 4096 Aug 26 10:09

drwxr-xr-x 31 userl userl 4096 Aug 22 23:02 ..

drwx------ 2 userl useril 4096 Jun 16 2016 crls.d _
-rw-rw-r-- 1 userl userl O Jun 16 2016 .gpg-v2l-migrated
drwx------ 2 userl userl 4096 Jun 16 2016 openpgp-revocs.d
drwx------ 2 userl userl 4096 Jun 16 2016 private- keys vi.d
-rW------- 1 userl userl 845144 Aug 23 01:07 pubring.

“rwW------- 1 userl userl 844721 Aug 22 23:13 pubrln 8~
-rwW------- 1 userl userl 600 Aug 25 18:25 random see
-rW------- 1 userl userl O Apr 22 2016 secrlng gpg
-rw-r--r-- 1 userl userl 49152 Aug 1 04:15 tofu.d

“rwW------- 1 userl userl 7040 Aug 1 04:15 trustdb.gpg

Other gpg functions

$ gpg --1import user_test_example.asc # 1mport

%_ ublic key of another user from an .asc
ile

$ gpg --edit-key "User.test" # sign an
imported key with _our key.

$ gpg -list-keys # list of personal and
imported keys

$ gpg --export my_gpg_key backup # extract
your key for backup

$ gpg -e -u "Bob Crypt" -r "User Test"
mydoc.odt # encrypt file so only User Test
can open 1it

$?p -d mydoc.odt # decrypt the mydoc.odt

1le from User Test

License

(1) O

BY SA

The work titled "LPIC-1 102-400 — Lesson 20” by
Theodotos Andreou Is distributed with the
Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

