

LPIC-1 102-400 – Lesson 19

110.2 Setup host security

The inetd and xinetd superservers

 The inetd and xinetd daemons are services that listen to
TCP and UDP ports and they start different applications
based on their configuration e.g. ssh, ftp, http etc

 The advantage of running ssh, telnet, ftp, tftp, through a
superserver, instead of their own autonomous daemon, is
having only one service listening to many ports, so we
are saving system resources

 Using a superserver you can also convert applications that
do not have their own daemon (e.g tftp, cvs) to services

 The disadvantage of using a superserver is the latency
caused when different ports all called and so different
applications are started at the same time. Thus
superservers are not recommended on high network
traffic systems

 A superserver listens to a port and assigns that to a service or
application when an external connection is initiated

 A superserver can serve several services simultaneously:

The inetd and xinetd superservers

Image by
User:UlrichAAB
Wikipedia

Image by
User:Frap
Wikipedia

The inetd superserver

 The inetd superserver has been traditionally one of the first
superservers in existence

 # apt-get install inetutils-inetd | openbsd-inetd
installation in Debian

 It’s main configuration file is /etc/inetd.conf and all files under
/etc/inetd.d/. The format of the configuration file looks like:

<service_name> <sock_type> <proto> <flags> <user> <server_path> <args>

The /etc/inetd.conf configuration file

 service_name: has to be a service name from the /etc/services
file

 socket_type: it can have values like stream, dgram, raw etc.
For TCP we use stream and for UDP we use dgram

 proto: some protocol from the /etc/protocols file. Usually TCP
or UDP

 flags: its values can be wait or nowait. wait is used in case
where inetd must wait for the calling service to be initialized
before occupying the listening port

 user: the user under which the service will run. root should be
avoid for security reasons

 server_path: the path of the called service/application
 args: arguments that need to pass to the calling service.

internal is used for processes internal to inetd

 An example of configured services in /etc/inetd.conf:
#discard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#time stream tcp nowait root internal
talk dgram udp wait root /usr/sbin/talkd
telnet stream tcp wait root /usr/sbin/telnetd

 After starting inetd:
 # netstat -lnptu | grep inet
tcp 0 0.0.0.0 :23 0.0.0.0:* LISTEN 13463/inetutils-ine
udp 0 0 0.0.0.0:517 0.0.0.0:* 13463/inetutils-ine

 # /etc/init.d/inetutils-inetd restart #
restart inetutils-inetd

 # /etc/init.d/openbsd-inetd restart # restart
openbsd-inetd

The /etc/inetd.conf configuration file

The xinetd superserver

 The xinetd superserver is a more recent system and provides more
features.

 Default in RedHat systems
 # apt-get install xinetd # install xinetd in

Debian
 Its main configuration file is /etc/xinetd.conf and the custom

configuration filed are under /etc/xinetd.d/. The format of the
configuration file looks like:

service rsync{

disable no # yes to disable
socket_type = stream # dgram, raw are other options
wait = no # yes to enable
user = root # the user that owns the calling service
server = /usr/bin/rsync # path of the calling service
server_args = --daemon# arguments of the calling service

}

Enabling/disabling services in xinetd

 If we change the disable parameter in /etc/xinetd.d/rsync to yes the
rsync service will be disabled at the next xinetd restart

 # /etc/rc.d/init.d/xinetd restart # restart in RedHat
 # /etc/init.d/xinetd restart # restart in Debian
 Verify if everything is OK:
netstat -lnptu | grep inet
tcp 0 0.0.0.0:873 0.0.0.0:* LISTEN 24950/xinetd

The /etc/passwd and /etc/shadow files

 Traditionally the user passwords were stored in the
/etc/passwd file. This turned out to be a serious security
issue because even though they were encrypted (hashed),
they could be read by all users because of the mandatory
644 permissions. This happens because this file is
supposed to be read by all users/services

 To solve this problem the shadow passwords system was
created. In the password field of /etc/passwd an “x” is
placed and the actual, salted and hashed, password goes
to the /etc/shadow file

 The /etc/shadow file is not read by others, just the root
user.

 The one-way hashing algorithms used typically on modern
systems are SHA256 and SHA512

Security in /etc/inittab

 Several Linux security guides recommend disabling Ctrl-
Alt-Del and making password mandatory even for single
user mode. These can be adjusted in /etc/inittab

 ~~:S:wait:/sbin/sulogin # prompt for
password even on single user mode.
This should be matched with a boot
loader password

 # ca::ctrlaltdel:/sbin/shutdown -r now
this inittab line, allows the system
restart bu pressing Ctrl-Alt-Del. It
can be disabled by adding a "#" to
comment it out. Or delete the line
completely

Detect and disable unnecessary
services

 Using the netstat -lnptu, ss -lnptu, or lsof -i commands we can
detect listening ports and the services that occupy them. If there
are any unnecessary services running, these should be disabled

 For disabling System V init services the symbolic links in the
rc[1-6].d directories should be renamed with a K as the first
character e.g.:
/etc/rc3.d/S19postgresql -> ../init.d/postgresql to
/etc/rc3.d/Κ19postgresql -> ../init.d/postgresql
This is also possible with the chkconfig command in RedHat and
the update.rc-d command in Debian

 Services already running should be stopped:
/etc/init.d/postgresql stop or
service postgresql stop

 Services running under the inetd or xinetd superservers should be
disabled from their configuration files and the superserver
restarted

 For systemd systems we can use these commands:
systemctl disable postgresql # disable
service
systemctl stop postgresql # stop service

Disable login by normal users with
/etc/nologin

 Sometimes when a system need to be in maintenance mode, the
system administrator wants to prevent users from logging into the
system

 In this case the system administrator can create the /etc/nologin file.
When this file is present, users are not allowed to login either
locally or remotely and the contents of the nologin file will be
showed to those who try

 # echo "Offline for maintenance" > /etc/nologin #
prevent all logins except root and display an
explanation

 # rm /etc/nologin # don't forget to delete it after
maintenance works are completed

Restrict network access with TCP
Wrapper

 TCP Wrapper is an Access Control Lists (ACL) system which can
restrict network connection to serviced that support it

 Service that support it have been compiled against the libwrap
library. This can be verified with ldd:

ldd /usr/sbin/sshd | grep libwrap
libwrap.so.0 => /lib/x86_64-linux-gnu/libwrap.so.0

(0x00007f2262807000)

 TCP Wrapper uses the /etc/hosts.allow and /etc/hosts.deny files to
set networks, hosts and services where access should be allowed or
denied

 These filed have an effect only to applications that use the libwrap
library

 The priority by which the /etc/hosts.allow and
/etc/hosts.deny files operate are as follows:

 If there is a network, domain, IP or hostname in
/etc/hosts.allow, access is permitted to it

 If there is a network, domain, IP or hostname in
/etc/hosts.deny, access to it is denied

 For host that do not exist in either file, access is allowed
 If we want to prevent access to all and allow access only to

some hosts, we should set ALL: ALL in hosts.deny and
add allowed systems and networks in hosts.allow

The /etc/hosts.allow and
/etc/hosts.deny files

 # cat /ets/hosts.deny
ALL: ALL # deny access to all services from
everywhere

 # cat /etc/hosts.allow

sshd: 10.0.1.0/24 EXCEPT 10.0.1.64/26 # allow access
to sshd for the 10.0.1.0/24 network with exception to
the 10.0.1.64/26 subnetwork

ALL EXCEPT tftpd: .example.com EXCEPT vpn.example.com
allow access to all services, except tftpd,from the
example.com (take note the initial dot!) except the
vpn.example.com node

mysqld: LOCAL, @netgroup # allow local access and
access from the netgroup group, to mysqld

telnetd: 10.0.1.0/24, .example.com EXCEPT 10.0.1.23 #
allow access to the telnetd service from the
10.0.1.0/24 network and the example.com domain but
deny access to the 10.0.1.23 IP Address

The /etc/hosts.allow and
/etc/hosts.deny files

License

The work titled ”LPIC-1 102-400 – Lesson 19” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

