

LPIC-1 102-400 – Lesson 14

109.1 Fundamentals of internet
protocols

The TCP/IP Protocol Suite

 The TCP/IP (Transport Control Protocol/Internet Protocol) protocol
suite, is a collection of protocols used in the Internet and
Networking in general

 All modern operating systems have their own “TCP/IP stack”

 The TCP/IP stack consist of 4 (in some literature 5) layers:
Application, Transport, Internet and Link

 Most protocols belong to one layer but there are some protocols that
cross layers

 The basic protocols we will examine are: TCP, UDP, IP (IPv4, IPv6),
ICMP and others

TCP/IP model

Layer Description Protocols

Application Provides communication between network applications,
session management and data presentation in a human
readable form

HTTP, SMTP,
DNS, DHCP

Transport Provides transport of messages and service separation
using ports. Provides reliability, error correction flow
control and data segmentation

TCP, UDP

Internet Responsible for routing data packets in an internetwork.
IP addresses are defined here

IP (IPv4, IPv6),
ICMP

Link It is responsible for converting the data for transport into
the physical elements of a network. Not realy a part of
TCP/IP

Ethernet, Wi-Fi
Token Ring,
PPP, SLIP

The format of an IPv4 address

10101100000011110001100000000110 - 172.16.24.6
 An IPv4 address is 32 bit long and represented in 4 octets

(bytes) in decimal separated by dots (dotted-decimal
notation).

 Every address is separated in two portions:

 Network portion: defines the network where the address
belongs

 Host portion: defines the unique host id that represents the
host in an IPv4 network

 Avery address is unique in a network

 Addresses are assigned statically or dynamically through the
DHCP protocol

The format of an IPv6 address

2001:0db8:0000:dead.0000:0000:0000:beef

2002:db8.0.dead::beef
 An IPv6 address is128 bit long and represent in 8 hextets (16 bit

words) in hexadecimal separated by colon

 Every address is separated in two portions:

 Network portion: defines the network where the address
belongs

 Host portion: defines the unique host id that represents the
host in an IPv6 network

 Avery address is unique in a network

 Addresses are assigned statically or dynamically through
SLAAC (stateless), DHCP (stateful) or a combination of
both

Finding the boundaries of an IPv4
network using subnet masks

 We have the following IPv4 address:
215.25.17.45 with mask 255.255.255.192 (/26)

$ ipcalc 215.25.17.45 255.255.255.192
Address: 215.25.17.45 11010111.00011001.00010001.00 101101
Netmask: 255.255.255.192 = 26 11111111.11111111.11111111.11 000000
=>
Network: 215.25.17.0/26 11010111.00011001.00010001.00 000000
HostMin: 215.25.17.1 11010111.00011001.00010001.00 000001
HostMax: 215.25.17.62 11010111.00011001.00010001.00 111110
Broadcast: 215.25.17.63 11010111.00011001.00010001.00 111111
Hosts/Net: 62 Class C

 The 26 most significant bits of 215.25.17.0
represent the network and the other 6 represent
the unique network id

Subnetting a bigger network

 If we want to segment the 215.25.17.0/255.255.255.0 networks
in smaller subnets using the mask 255.255.255.224 we will
get 8 subnets

$ ipcalc 215.25.17.0 255.255.255.0 255.255.255.224 | grep -A1 '[1-8]\.$'
 1.
Network: 215.25.17.0/27 11010111.00011001.00010001.000 00000
 2.
Network: 215.25.17.32/27 11010111.00011001.00010001.001 00000
 3.
Network: 215.25.17.64/27 11010111.00011001.00010001.010 00000
 4.
Network: 215.25.17.96/27 11010111.00011001.00010001.011 00000
 5.
Network: 215.25.17.128/27 11010111.00011001.00010001.100 00000
 6.
Network: 215.25.17.160/27 11010111.00011001.00010001.101 00000
 7.
Network: 215.25.17.192/27 11010111.00011001.00010001.110 00000
 8.
Network: 215.25.17.224/27 11010111.00011001.00010001.111 00000

Variable length subnet masks

 It is not always efficient to use the same subnet mask for all the networks
because we may have different needs in each one. Let’s segment the
network 215.25.17.0/255.255.255.0 in other subnets with different masks

$ ipcalc 215.25.17.0 255.255.255.192 | egrep -i "(network|broadcast)"
Network: 215.25.17.0/26 11010111.00011001.00010001.00 000000
Broadcast: 215.25.17.63 11010111.00011001.00010001.00 111111

$ ipcalc 215.25.17.64 255.255.255.224 | egrep -i "(network|broadcast)"
Network: 215.25.17.64/27 11010111.00011001.00010001.010 00000
Broadcast: 215.25.17.95 11010111.00011001.00010001.010 11111

$ ipcalc 215.25.17.96 255.255.255.224 | egrep -i "(network|broadcast)"
Network: 215.25.17.96/27 11010111.00011001.00010001.011 00000
Broadcast: 215.25.17.127 11010111.00011001.00010001.011 11111

$ ipcalc 215.25.17.128 255.255.255.248 | egrep -i "(network|broadcast)"
Network: 215.25.17.128/29 11010111.00011001.00010001.10000 000
Broadcast: 215.25.17.135 11010111.00011001.00010001.10000 111

Private IP Addresses

 Because of the exhaustion of IPv4 addresses internationally, the
private IPv4 address were created. These IP addresses are not
routable over the Internet and they are supposed to be used only on
internal networks

 If a computer from a private network wished to access the Internet,
from a private network, its private address must be “translates” to
a Public IPv4 address using the “Network Address Translation”
(NAT) mechanism.

 Every private network that accesses the Internet should have one or
more public ipv4 addresses. The private addresses, which are
usually more than the public addresses, are overloaded to the
public address. That means on public address may represent more
than one private address

Address block IPv4 Address range Number of addresses

10.0.0.0/8
(255.0.0.0)

10.0.0.0 – 10.255.255.255 16.777.216

172.16.0.0/12
(255.240.0.0)

172.16.0.0 – 172.31.255.255 1.048.576

192.168.0.0/16
(255.255.0.0)

192.168.0.0 – 192.168.255.255 65.536

Private IP Addresses

The solution: IPv6
 Version 6 of IP (IPv6) was created to counter the problem of IPv4

exhaustion

 There are many improvements but the most important in the use of
128 bit address which come up to: 2128 = 3,4 x 1038 addresses!

 The addresses are represented in hexadecimal and separated with “:”
in 16 bit words, e.g.:

 2001:0db8:85a3:0000:0000:8a2e:0370:7334 ->
2001:db8:85a3:0:0:8a2e:370:7334 ->
2001:db8:85a3::8a2e:370:7334

 0:0:0:0:0:0:0:1 -> ::1 (loopback address) , 0:0:0:0:0:0:0:0 -> ::
(any address)

 2001:db8:a::/64 (/64 is the network prefix)

Special addresses

 loopback: the network 127.0.0.0/8 is used to test the health of the
TCP/IP stack. The 127.0.0.1 is set on the lo interface and the
localhost hostname resolves to 127.0.0.1. The 127.0.0.0/8 can not
be used for routing neither on the Internet or internal networks

 link-local (APIPA): Addresses from 169.254.1.0 to 169.254.254.255
are used for the automatic assignment of an IP on a network
interface card (e.g. Ethernet) when there is no DHCP in the
network. The nodes with link-local IPs can only communicate
within the same network segment with other link-local IPs. They
cannot reach nodes outside their network because link-local is not
supposed to be routable

TCP/IP protocols

 IP (Internet Protocol): it is the backbone of TCP/IP and
used by almost every other protocol

 It’s basic task is routing data from one network to the
other using IP addresses.

 It is unreliable i.e. it does not provide error
correction, re-transitions works on the best-effort
principle

 It does not provide flow control)
 It is connectionless
 It is implemented at the Internet layer

 TCP (Transport Control Protocol): it is the basic protocol for
creating connections between applications. It transports data
using ports, which are essentially service ids.

 It is reliable
 It provides flow control
 It is connection-oriented
 It has a bigger overhead comparing to UDP
 It only supports unicast i.e. communication between two

nodes
 Implemented at the transport layer of the TCP/IP model

and uses IP for routing

TCP/IP protocols

 UDP (User Datagram Protocol): it is implemented at the
transport layer and just like TCP it uses ports to send data in
the form of datagrams

 It is unreliable
 It provides no flow control
 It is connectionless
 It is faster than TCP because of the lower overhead
 Supports unicast, broadcast and multicast
 It is implemented at the transport layer and uses IP for

routing

TCP/IP protocols

 ICMP (Internet Control Message Protocol): it is used for
troubleshooting and notifying other protocols about the behavior
of the network

 Flow control: notifies TCP about network congestions
 Notifies other protocol about unreachable destinations

(Destination Unreachable)
 Re-routing of network paths (Route Redirection)
 Checking remote destination e.g. using the ping command

 It is connectionless
 It is implemented at the Internet layer and uses IP for

routing

TCP/IP protocols

Ports and services

 Ports are implemented at the transport layer by TCP and UDP, for
identifying services on a network node

 To transfer a data packet, the application need to know the IP address
of the node and the id of the service (aka port) for which the data
is destined to

 A node (server) can offer many services and these are distinguished
by ports

 Services (aka applications) are implemented at the application layer
while ports are implemented at the transport layer

 Some examples of application protocols of TCP/IP: ftp, ssh, http, dns
etc

 The /etc/services file contains a list of well-known services and the
ports they use

Well-known ports and services

Service Port(s) Description

FTP (File Transfer Protocol) 20 (data), 21 (control)/TCP FTP is used for file transfers over
the Internet

SSH (Secure Shell) 22/TCP Secure Remote control protocol

TELNET 23/TCP Insecure remote control protocol

SMTP, SMTPS (Simple Mail
Transfer Protocol)

25, 465 (TLS), 587
(STARTTLS)/TCP

Mail Sending Protocol

DNS (Domain Name Service) 53/TCP-UDP Resolving hostnames to IPs

DHCP 67 (Server), 68 (Client)/UDP Automatic IP Address assignment

HTTP/HTTPS (HyperText Transfer
Protocol)

80, 443 (TLS)/TCP World Wide Web

POP3, POP3S (Post Office
Protocol)

110, 995 (TLS)/TCP Receiving mail locally

Netbios 139/TCP-UDP File/printer sharing for Windows
networks

IMAP, IMAPS (Internet Message
Access Protocol)

143, 993 (SSL) Corporate Mail receiving (on a
cental server)

SNMP (Simple Netowork
Management Protocol)

161, 162/TCP-UDP Monitoring and Netork
Management

LDAP (Lightweight Directory
Access Protocol)

389, 636 (TLS)/TCP Directory Information/Authentication
Protocol

Syslog (System Log Protocol) 514/UCP, 6514 (TLS)/TCP Sending logs over the network

Connect to FTP servers with `ftp`

 The ftp command is a client for connecting to ftp servers via CLI

 # ftp ftp.debian.org # connect to ftp.debian.org

 # ftp -v ftp.debian.org # connect in verbose mode

 Commands:
ftp> ls # list files/directories
ftp> cd dir # change into directory dir
ftp> get file1 # get file file1
ftp> mget file[1-9] # get multiple files file1,
file2, ..., file9
ftp> put file2 # upload file file2 from local
working directory
ftp> mput file[a-f] # upload multiple files
ftp> pwd # print working directory on server
ftp> quit # = exit. Exit ftp server

Connect to services with `telnet`

 The telnet command was used in the past for shell access on remote
nodes. Because of its inhered weakness to send everything in
cleartext, it was replaced by ssh which supports encryption

 Nevertheless it is a useful troubleshooting tool for non encrypted
services like HTTP, SMTP etc

 $ telnet telehack.com # connect to telehack.com
 $ telnet www.debian.org 80 # connect to the debian

webserver for
 # checking the service
GET

 $ telnet mail.theo-andreou.org 25 # connect to
mailserver for basic

 # health check
quit

 $ telnet towel.blinkenlights.nl # try and see! :)

Query DNS servers with `host`

 The host command queries DNS servers for DNS records

 $ host theo-andreou.org # query for A, CNAME (and
ΜΧ if exist) records

 $ host theo-andreou.org 8.8.8.8# send query to a
public DNS sever instead of the local resolver

 $ host www.ubntucy.org # CNAME (alias) example

 $ host -v google.com # verbose mode

 $ host -t SOA theo-andreou.org # search for the
authoritative DNS server of the theo-andreou.org
domain

 $ host -t NS theo-andreou.org # look for the theo-
andreou.org DNS servers (aka nameservers)

 The dig command is a somewhat more powerfull alternative to host

 $ dig theo-andreou.org # show Α, CNAME and NS records

 $ dig theo-andreou.org @8.8.8.8 # send query to the
8.8.8.8 DNS server instead of the default system
resolver

 $ dig www.ubuntucy.org # CNAME (alias) example

 $ dig mx theo-andreou.org # find mail servers for theo-
andreou.org

 $ dig ns theo-andreou.org # find DNS servers for theo-
andreou.org

 $ dig soa theo-andreou.org # find authoritative DNS
server for theo-andreou.org

 $ dig -x 8.8.8.8 # Reverse DNS (PTR) query to find the
hostname, given the IP address

Query DNS servers with `dig`

Check network availability with
`ping`

 The ping command check the availability of network nodes using the
ICMP protocol

 $ ping 127.0.0.1 # check the local TCP/IP stack
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.031 ms
64 bytes from 127.0.0.1: icmp_req=2 ttl=64 time=0.051 ms
^C # <= *** Ctrl-C to terminate ***
--- 127.0.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.031/0.041/0.051/0.010 ms

 $ ping www.google.com # check the response of www.google.com
PING www.l.google.com (173.194.69.147) 56(84) bytes of data.
64 bytes from bk-in-f147.1e100.net (173.194.69.147): icmp_req=1
ttl=47 time=100 ms
64 bytes from bk-in-f147.1e100.net (173.194.69.147): icmp_req=2
ttl=47 time=100 ms
64 bytes from bk-in-f147.1e100.net (173.194.69.147): icmp_req=3
ttl=47 time=102 ms
^C # <= *** Ctrl-C to terminate ***
--- www.l.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 100.609/101.233/102.330/0.820 ms

 $ ping -c4 2.1.1.1 # send only 4 ICMP packets to IP 2.1.1.1
PING 2.1.1.1 (2.1.1.1) 56(84) bytes of data.

no responce
--- 2.1.1.1 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time
2999ms

 $ ping -c4 192.168.2.8 # send only 4 ICMP packets to ICMP σε
192.168.2.8
PING 192.168.2.8 (192.168.2.8) 56(84) bytes of data.
From 192.168.2.11 icmp_seq=1 Destination Host Unreachable
From 192.168.2.11 icmp_seq=2 Destination Host Unreachable
From 192.168.2.11 icmp_seq=3 Destination Host Unreachable
From 192.168.2.11 icmp_seq=4 Destination Host Unreachable

reply from 192.168.2.11 that 192.168.2.8 is offline
--- 192.168.2.8 ping statistics ---
4 packets transmitted, 0 received, +4 errors, 100% packet
loss, time 3013ms

Check network availability with
`ping`

Check network paths with
`traceroute` and `tracepath`

 These commands are used to check the path of a route until
a certain destination. The results will display the
intermediate nodes and if there is a problem, we will
know exactly where the problem is. traceroute has more
options than tracepath but the latter is default for most
distributions

 There is also mtr which combines the results of
traceroute/tracepath and ping and continues producing
results until we press Ctrl-C

$ traceroute malena.theo-andreou.org # find path to malena.theo-andreou.org

traceroute to malena.theo-andreou.org (37.247.48.150), 30 hops max, 60 byte packets
 1 gateway (192.168.10.1) 0.231 ms * *
 2 gw.primeoffice.thunderworx.net (78.158.142.254) 1.094 ms 1.078 ms 1.424 ms
 3 gw.ip.primehome.com (46.21.57.254) 49.094 ms 49.110 ms 49.089 ms
 4 j1.lim-2.nsp-transit.net (78.158.134.118) 49.069 ms 49.066 ms j1.lim.nsp-transit.net

(78.158.134.250) 49.031 ms
 5 v3068.j1.fra.prime-tel.net (78.158.141.157) 97.865 ms 100.546 ms 100.570 ms
 6 213.140.39.140 (213.140.39.140) 102.387 ms 100.581 ms 102.761 ms
 7 5.53.5.253 (5.53.5.253) 115.164 ms 115.172 ms 111.848 ms
 8 5.53.4.28 (5.53.4.28) 102.615 ms 112.005 ms 113.865 ms
 9 be12956.agr41.fra03.atlas.cogentco.com (130.117.14.117) 129.002 ms 128.962 ms

128.894 ms
10 be3187.ccr42.fra03.atlas.cogentco.com (130.117.1.118) 131.774 ms 107.528 ms 105.803

ms
11 be2960.ccr22.muc03.atlas.cogentco.com (154.54.36.254) 112.813 ms

be2959.ccr21.muc03.atlas.cogentco.com (154.54.36.54) 113.138 ms
be2960.ccr22.muc03.atlas.cogentco.com (154.54.36.254) 112.830 ms

12 be3072.ccr51.zrh02.atlas.cogentco.com (130.117.0.17) 125.978 ms 125.930 ms 125.661
ms

13 be3586.rcr21.mil01.atlas.cogentco.com (154.54.60.114) 126.047 ms 125.913 ms
be2043.rcr21.mil01.atlas.cogentco.com (154.54.38.102) 125.998 ms

14 be3459.nr51.b019138-1.mil01.atlas.cogentco.com (154.25.12.74) 126.769 ms 128.092 ms
127.883 ms

15 prometeus.demarc.cogentco.com (149.14.134.122) 131.175 ms 131.180 ms 133.485 ms
16 37.247.50.20 (37.247.50.20) 129.294 ms 37.247.50.54 (37.247.50.54) 130.344 ms

130.225 ms
17 malena.theo-andreou.org (37.247.48.150) 130.919 ms 117.366 ms 37.247.50.51

(37.247.50.51) 130.660 ms

Check network paths with
`traceroute` and `tracepath`

$ tracepath malena.theo-andreou.org
 1?: [LOCALHOST] pmtu 1500
 1: gateway 0.640ms
 1: gateway 0.635ms
 2: gw.primeoffice.thunderworx.net 1.337ms
 3: gw.ip.primehome.com 48.664ms asymm 4
 4: j1.lim.nsp-transit.net 49.124ms asymm 5
 5: v3068.j1.fra.prime-tel.net 115.959ms asymm 6
 6: 213.140.39.140 129.760ms
 7: 5.53.5.253 103.743ms
 8: 5.53.4.28 109.318ms
 9: be12956.agr41.fra03.atlas.cogentco.com 141.998ms asymm 11
10: be3186.ccr41.fra03.atlas.cogentco.com 120.809ms asymm 12
11: be2960.ccr22.muc03.atlas.cogentco.com 127.217ms asymm 13
12: be3073.ccr52.zrh02.atlas.cogentco.com 131.622ms asymm 14
13: be3586.rcr21.mil01.atlas.cogentco.com 148.614ms asymm 15
14: be3459.nr51.b019138-1.mil01.atlas.cogentco.com 141.369ms asymm 16
15: prometeus.demarc.cogentco.com 139.371ms asymm 17
16: 37.247.50.20 133.596ms asymm 12
17: malena.theo-andreou.org 133.715ms reached
 Resume: pmtu 1500 hops 17 back 12

Check network paths with
`traceroute` and `tracepath`

Search for domain and IP owners
with `whois`

 The whois command sends queries in domain
registries and IP assigning authorities for finding
who is responsible

 $ whois lpi.org # search for people or
organizations responsible for the
lpi.org domain

 $ whois 8.8.8.8 # search for people or
organizations responsible for the
8.8.8.8 domain

 $ whois ellak.org.cy # alas it does not
work for .cy domains!

License

The work titled ”LPIC-1 102-400 – Lesson 14” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

