

LPIC-1 102-400 – Lesson 2

105.2 Customize or write simple
scripts

Creating scripts

 $ cat > many.sh << EOF # create a new script
 # file
cd \$1
ls -la
pwd
EOF

 $ source many.sh /etc # use the many.sh file
as command source

 $. many.sh /etc # identical command to the
above. The keyword source is replaced with
"."

 $ bash many.sh /etc # the output of this
command is the same as above but the
commands are executed in a child shell

Creating executable scripts

 $ chmod a+x many.sh # convert the
many.sh script into an executable file

 $ ls -l many.sh # verify
-rwxr-xr-x 1 theo theo 17 2011-12-18
10:24 many.sh

 $./many.sh # since many.sh is not
included in $PATH it will have to be
called explicitly with "./" or using
the absolute path, $ΗΟΜΕ/many.sh or ~/
many.sh. If it is simply invoked with
its name on the working directory
nothing is executed and an error is
issued

Note: applying SUID or SGID in scripts has no effect. This
is a security measure

The shebang line

The shebang is a special line that come first on all script
files. It defines the program to be used, to execute the
command that follow in the script

 #!/bin/sh (generic sh shell script)
 #!/bin/bash (bash shell script)
 #!/bin/csh (csh shell script)
 #!/bin/tcsh (tcsh shell script)
 #!/bin/sed (sed script)
 #!/usr/bin/awk (awk script)
 #!/usr/bin/perl (perl script)
 #!/usr/bin/python (python script)

Apply shebang in shell script

 $ cat > many.sh << EOF # create a shell script
#!/bin/sh
the #!/bin/bash shebang is another
possible option
cd \$1
ls -la
pwd
EOF

 $ chmod a+x many.sh
 $./many.sh /etc

Command Substitution

 For command substitution we use the bash operators “``” or
“$()”. The enclosed commands are executed in a child
shell

 $ KERNEL_VER=`uname -r` # the output of uname -r is
passed as the value of the KERNEL_VER variable

 $ grep -i linux $(find /usr/share/doc -name "*.txt") #
the results of the find /usr/share/doc -name "*.txt"
command are used as files to be searched by grep

Sending email from shell

 $ echo "Universe Collapse\!" | mail -s "Universe failed" root
send email message to the root user with subject

"Universe failed" and body "Universe Collapse\!"

 $ cat /var/log/messages | mail -s "Logs" user@example.com
send email message to user user@example.com with

subject "Logs" and body the contents of /var/log/messages

 $ mail -s "File systems" user@example.com < /etc/fstab
send email message to user@example.com with subject

"File systems" and content /etc/fstab

 $ mail -s "Test mail" root@server.int << EOF # another example
using "<<"
> This is a test
> We are the best
> EOF

Input data with `read`

 $ vi user.sh # press "i" for insert mode
#!/bin/bash
echo "User Name: "
read USERN
echo "Shell: "
read SHELLU
echo "User Name = $USERN, Shell = SHELLU"
exit 0

 $ chmod +x user.sh # make script, executable
 $./user.sh # invoke script

Check exit status with
`test` or `[`

 The test or [commands are bash builtins but also executable files in
$PATH

 $ test -e /etc/fstab # check if file exists.
exit status is "0" if it exists and "1" if
absent

 $ [-e /etc/fstab] # this command is
identical to the command above. The bracket
"[" is just another name for test with the
only difference that it has to terminated
with "]". Both brackets must be separated
from the rest of text by space!

 $ test -x /bin/ls # check if file exists and
it is executable

 $ [-s ~/.bash_profile] # check if file
exists and is not empty

 $ test "$HISTSIZE" -eq 1000 # check if the HISTSIZE
variable equals to 1000. It is recommended for
variables to be enclosed in double quotes: ""

 $ ["$EDITOR"] # = [-n "$EDITOR"]. check if the
$EDITOR variable is set

 $ [-x /bin/ip -o -x /sbin/ip] # logical OR. Check if
files /bin/ip or /sbin/ip exist and they are
executable

 $ ["$CONT" = "yes" -a -f /usr/lib/libtest.so] #
logical AND. Check if CONT exists and equals to"yes"
and the regular /usr/lib/libtest.so file exists

Check exit status with
`test` or `[`

Options of `test` or `[`

 -e file # check if
file exist

 -f file # check if
file exist as
normal file

 -d dir # check it the
dir directory
exists

 -L file # check if
the symlink file
exists

 -r file # check if
file exists and is
readable

 -w file # check if file
exists and is
writeable

 -x file # check if file
exists and is
executable

 -s file # check if file
exists and is not
empty

 file1 -ot file2 # check
if file1 is older
than file2

 file1 -nt file2 # check
if file1 is newer
than file2

 -n string # check if
the length of
string is non-zero

 -z string # check if
the length of
string equals zero

 string1 = string2 #
check if the two
strings are
identical

 string1 != string2 #
check if the two
strings are
different

 arg1 -eq arg2 # check
if arg1 is
arithmetically
equal to arg2

 arg1 -ne arg2 # check
if arg1 is
arithmetically not
equal with arg2

 arg1 -lt arg2 # check
if arg1 is less
than arg2

 arg1 -le arg2 # check
if arg1 is less or
equal to arg2

 arg1 -gt arg2 # check
if arg1 is greater
than arg2

 arg1 -ge arg2 # check
if arg1 is greater
or equal to arg2

Options of `test` or `[`

Options of `test` or `[`

 ! expr # check if expression expr
is false

 expr1 -a expr2 # logical AND
between expr1 and expr2

 expr1 -o expr2 # logical OR between
expr1 and expr2

Note: for more information look at the test
documentation with:
info coreutils 'test invocation'

Conditionals with `if`

 The if builtin is used for executing commands, conditionally

 if [-z "$USER"] # = if test -z "$USER"
then

echo \$USER is not defined!
exit 1

elif ["$USER" = root]
then
echo 'Warning\! You are root!'

else
echo "\$USER is $USER"

fi
 if ["$USER" = user] ; then echo \$USER is

user ; fi

 The if command can be combined with any other command
like,for example, grep. It can be used interactively from
the shell or used in a script

 $ if grep tobedeleted /tmp/dummy.file
> then
> rm -f /tmp/dummy.file
> elif ["$?" = 1]
> then
> echo "dummy.file is not to be
deleted\!"
> else
> echo "Error in grep"
> fi

Conditionals with `if`

Print sequences with `seq`

 $ seq 1 10 # prints all numbers
from 1 to 10 in separate lined
each

 $ seq 1 2 10 # prints all numbers
from 1 to 10 in steps of 2 (1,
3, 5, 7, 9)

 $ seq 2 2 10 | xargs # prints 2,
4, 6, 8, 10. The output will be
in a single line because is piped
to xargs

 $ seq 5 5 105 # five, ten,fifteen,
 …, 100, 105

Create loops with `for`

 In its basic form, for sets a variable (PET in this
case) which tales values from a list (dog cat
iguana turtle)

 for PET in dog cat iguana turtle
do
echo "Pet is $PET"

done

 for FILE in `ls /etc` # use of /etc contents
 # as a list
do

echo "File is $FILE"
done

 SUM=0
for I in $(seq 1 30) # = for I in {1..30}, for
 # ((I = 1 ; I <= 30 ; I++))
do

SUM=`expr $I + $SUM`
if ["$I" -eq 30]

then echo "Sum is $SUM"
fi

done

Create loops with `for`

 $ for FILE in * # select all files/directories in
 # the working directory
do

echo "$FILE is in the current directory"
done

 $ for FILE in *.txt # select all *.txt files in
 # the working directory
do

echo "$FILE is a text file, in pwd"
done

Create loops with `for`

Create loops with `while`

 The while builtin is used to check a condition at the
beginning of the loop. The iterations persist until the
condition is false

 VAR=0
LIMIT=30
while ["$VAR" -lt "$LIMIT"]
do

echo "\$VAR = $VAR"
VAR=`expr $VAR + 1`

done

 while ["$VAR" != "end"] # this loop will
 # accept values and
 # print them until
 # someone enters
 # "end"
do

echo "Input VAR: (end to exit) "
read VAR
echo "\$VAR = $VAR"

done

Create loops with `while`

 The until builtin is used, contrary to while, to check if a
condition at the beginning of the loop is false and
iterations persist until the condition is true

 until ["$VAR" = "end"] # this loop will
 # accept values and
 # print them until
 # someone enters
 # "end"
do

echo "Input VAR: (end to exit) "
read VAR
echo "\$VAR = $VAR"

done

Create loops with `until`

License

The work titled ”LPIC-1 102-400 – Lesson 2” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

