

LPIC-1 102-500 – Lesson 17

110.1 Perform security administration
tasks

The SUID/SGID flags

 The SUID and SGID flags are used to give the right to normall users
to execute a commands with the rights of another user or group.

 -rwsr-xr-x 1 root root 90640 2011-08-09 19:16 /bin/mount # the
/bin/mount binary can be executed with root rights by any iuser
in the system.

 -rwxr-sr-x 1 root shadow 50760 2011-06-24 12:28 /usr/bin/chage
the /usr/bin/chage binary can be executed with shadow group
rights by any user in the system.

 -rwsr-sr-x 1 daemon daemon 47848 2011-05-16 13:32 /usr/bin/at
the /usr/bin/at binary can be executed with daemon user and
group rights by all users.

Security concerns of SUID/SGID

 The presence of the SUID/SGID flags on binaries may be
convenient but imposes very serious security risks if the
command has some security vulnerability (e.g. buffer
overflow).

 A vulnerable command can give the opportunity to an
attacker to use it in away it was not purposed. Imagine
for example if the mount command could call the bash
shell! This would mean that bash would had the same
rights of the SUID user of mount which is root!

 For this reason we need to check our system for
SUID/SGID flags and avoid setting it to commands that
can modify files or call the shell, like vi or emacs.

Find and remove SUID and SGID

 # find / -perm -4000 -type f -ls # check all normal
files for the SUID flag, everywhere in the system.

 # find / -perm -2000 -type f -ls # check all normal
files for the SUID flag, everywhere in the system.

 # chmod u-s /bin/ping # remove SUID from /bin/ping.

 # chmod g-s /usr/bin/crontab # remove SGID from
 # /usr/bin/crontab.

 # chmod -s /usr/bin/at # remove SUID and SGID from
 # /usr/bin/at.

The /etc/shadow file
 The /etc/shadow file contains the hashed passwords of the users but

also useful information about the expiry of passwords. The
/etc/shadow fields are assigned the following roles:

 user:6UwkipSFw$Jp3JxkKjZJ48zdM:15428:5:20:7:15:15695:
1. Username
2. Hashed password (! or nothing: no password, *: disabled account, !

<hash>: locked account. !!: password not set).
3. Last change date
4. Minimum number of days where the user can change the password (0

means the passwords can be changed any time).
5. Maximum number of days where the user can keep the same password

(99999 means no change required)
6. Number of days before the expirations where a warning will be issued.
7. Number of days (inactivity days) after the expiration where the

account will be disabled.
8. Expiration Date (number of days after 01/01/1970).

Manage password expiry information
with `chage`

 # chage -l user1 # show expiry information for
user1.

 # chage -E 2012-12-21 user1 # set expiration
date.

 # chage -I 15 user1 # set inactivity days.

 # chage -m 5 user1 # minimum days between
password changes.

 # chage -M 20 user1 # maximum days during
which a password is valid.

 # chage -W 6 user1 # warning days before
expiration.

 # chage -d 2012-03-25 user1 # set the last
password change date.

Using `date` for showing
change/expiry dates

 user:6UwkipSFw$Jp3JxkKjZJ48zdM:15428:5:20:7:15:15695:
 # date -d "1970/01/01 +15428 days"

Thu Mar 29 00:00:00 EEST 2012 # last pass change date.
 # date -d "1970/01/01 +15695 days"

Fri Dec 21 00:00:00 EET 2012 # password expiry date.

These values can be used as parameters in the chage command to set
days after 01/01/1970 (unix epoch).

 # chage -d 15428 user # = chage -d 2012-03-29 user

 # chage -E 15695 user # = chage -E 2012-12-21 user

Using `passwd` to manage expiry
information

 # passwd -i 15 user1 # set inactivity days.

 # passwd -n 5 user1 # minimum days between
password changes.

 # passwd -x 20 user1 # maximum days during
which a password is valid.

 # passwd -w 6 user1 # warning days before
expiration.

 # passwd -e user1 # force password expiration
and prompt for password change.

 # passwd -S user1 # show user1 status.

 # passwd -Sa # show statuses for all users.

 # usermod -e 2012-12-21 user # set expiration
date.

 # usermod -f 15 user # set inactivity days.

 # usermod -L user # lock account.

 # usermod -U user # unlock account.

Using `usermod` to manage expiry
information

Detect open ports on the system

 Ports on a system as used to provide access to
applications “listening” to them.

 Sometimes system have pre-installed services the
may not be needed.

 It is a good practice to disable unused services to
save resources but most importantly to minimize
the attack surface on a system. Attackers may use
existing vulnerabilities in these services to
penetrate the system.

 To check for open ports we can use the ss, netstat,
lsof and nmap tools.

 The ss and netstat commands can be used to show
the open ports on a system.

 # ss -lnptu # show all listening tcp and
udp ports in numeric format and the
programs that use them.

 # netstat -lnptu # show all listening tcp
and udp ports in numeric format and the
programs that use them.

Check for open ports with `ss` and
`netstat`

 The lsof command is used to display open files in the system.
Sockets and ports are also considered files in a Linux system.

 # lsof # show all open files in a system.
 # lsof -i # show all TCP/IP connections and ports.
 # lsof -iTCP -s:LISTEN -P # show all TCP listening

ports in numeric form (-P).
 # lsof -iUDP | grep -v "\->" # show open UDP ports
 # lsof -p 6543 # show all open files of the 6543

process.
 # lsof -c apache2 # show open files of all apache2

processes.
 # lsof -u user1 # show all open files by user1.
 # lsof /mnt # show processes using the /mnt directory.

Check for open ports with `lsof`

 Unlike the ss, netstat and lsof commands, nmap can detect open
ports on other computers. In some countries its use is forbidden. It
is a good practice to use it only on computers you own.

 $ nmap sT www.network.dom # (TCP Connect scan) default type of
scan for non-privileged users.

 # nmap -sS www.network.dom # (TCP Syn scan) default type of
scan for non-privileged users (faster).

 # nmap -p 65-87,100 www.network.dom # check ports 65 to 87 and
100 (TCP).

 # nmap -p 1-65535 -Ο www.network.dom # check all ports and
detect operating system.

 # nmap -sU -n www.network.dom # UDP scan with numeric
presentation.

 # nmap -sP 10.0.0.0/24 # ping sweep to detect active nodes.

 # nmap -sV 10.0.0.3 # detect services and versions behind open
ports.

Detect open ports with `nmap`

Switch users with `su`
 The su command is used to login into the system as another

user. You have to use the other user’s password to login. If
no user is defined root is implied.

 $ su # login as root inheriting the environment of the
original user.

 $ su - # login to the system as root. The environment
will be the same as if we login directly as root
(switch to the home directory, run .bash_profile
or .profile etc).

 $ su user1 # switch to user1.
 $ su - user1 # switch to user1 in an environment same

as login.
 # su - user # the root user can assume the role of any

other system user without using a password!
 $ su -c "find /etc" # run the find command with root

privileges.

Run commands as another user with
`sudo`

 The sudo command is used to execute a command as another
user but using your own password. For this to happen the
user that needs sudo command execution rights must be
declared in the /etc/sudoers or belongs to a group that is
declared in said file.

 $ sudo systemctl restart ssh # run command as
root.

 $ sudo -u user1 mail # run command as user1.

 $ sudo -i # run a bash shell as root.

 $ sudo -b updatedb # run a background command as
root.

http://xkcd.com/149/

Configuring sudo with /etc/sudoers

 In the /etc/sudoers file we declare all users or groups that have
the right to use sudo. It’s a read-only file so it is not
recommended to be edited by any other text editor besides
visudo.

 # visudo # open /etc/sudoers for editing.

 user1 ALL=(ALL) ALL # give the right to user1 to
run on any system, as any user χρήστης, any
command.

 user1 mypc = (operator) /usr/bin/mount,
/bin/kill, /usr/bin/lprm # give the right to
user1 to run on mypc, as the operator user, the
commands mount, kill and lprm.

 user1 server = (operator : operator) /usr/bin/mount,
/bin/kill # give the right to user1 to execute on server,
as user and group operator, the commands mount and kill.

 user1 hostname = (operator) /usr/bin/mount, (root)
/bin/kill # give the right to user1 to run as operator the
command mount and as root the command kill.

 user1 ALL = NOPASSWD: /bin/kill, PASSWD: /usr/bin/mount #
give the right to user1 to run as root, the command kill
without a password and the command mount using a password.

 %admin ALL=(ALL) ALL # assign all rights to the admin group.

Configuring sudo with /etc/sudoers

Set limits with the
/etc/security/limits.conf file

 In the /etc/security/limits.conf file we define the limits for the
different resources of the system.

 Its format is:
<domain> <type> <item> <value>

 domain: usename (user1), group (@group1) or * (everybody)
 type: soft (soft limit), hard (hard limit), – (both). The soft limit can

be exceeded by the users using the ulimit command while the hard
limit can not.

 item: set the resource to limit e.g. maxlogins, nproc, cpu, memlock,
etc.

 value: the limit value. It can be in kB for data resources, or minutes
for time resources or even just a number of files, resources etc.

 Example items:
 maxlogins: maximum sessions number.
 nproc: number of processes.
 stack: stack memory size.
 memlock: locked memory size.
 as: memory space size.
 cpu: CPU usage time.
 fsize: files size.
 nofiles: number of files.

Set limits with the
/etc/security/limits.conf file

 Example of limits in /etc/security/limit.conf:

<domain> <type> <item> <value>

* hard memlocks 10000
@student hard nproc 20
@faculty soft nproc 20
@faculty hard nproc 50
ftp hard nproc 0
@student - maxlogins 4

 The hard limit for memlocks, for all users is 10000 kB.
 The hard limit for nproc for members of student is 20 processes.
 The soft and hard limit for nproc, for the members of the faculty

group is 20 and 50 processes respectively.
 The ftp user has no right to execute processes.
 The members of the student group are allowed 4 sessions each.

Set limits with the
/etc/security/limits.conf file

 The ulimit command s used to temporarily change the resources of
the shell we are currently working with and all its child processes.

 Only the root user ac define limits and only the root can change its
hard limit.

 Normal users can only redefine their own soft limit and it should not
exceed the hard limit.

$ uname -a # = uname -Sa. Show soft limits
max locked memory (kbytes, -l) 64 # locked memory
max memory size (kbytes, -m) unlimited # resident memory
stack size (kbytes, -s) 8192 # stack size
cpu time (seconds, -t) unlimited # CPU time
max user processes (-u) 30966 # number of processes
virtual memory (kbytes, -v) unlimited # virtual memory

Set user limits with `ulimit`

 $ ulimit -Ha # show the user’s hard limits.
 $ ulimit -u 45000 # increase the number of

processes limit to 5000.
 # ulimit -Hs 16384 # set the hard stack limit

to 16ΜΒ.
 $ ulimit -St 2 # set the soft cpu time limit

to 2 minutes.
 # ulimit -v 2048000000 # increase virtual

memory limits (soft and hard) to 2GB.
 $ ulimit -l 128 # increase the soft locked

memory limit to 128kB.

Set user limits with `ulimit`

The `who`, `w` and `last` commands

 $ who # show the logged in users
and sessions.

 $ w # a better alternative to the
who, showing user and sessions
with more details.

 $ last # show the more recent
logins, shutdowns and reboots.

 # lastb # show the more recent
failed logins.

License

The work titled ”LPIC-1 102-500 – Lesson 17” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

