

LPIC-1 102-500 – Lesson 15

109.3 Basic network troubleshooting

Problems with DHCP

 If a computer refuses to get an IP address from
DHCP, or gets a 169.254.0.0/16 address this
could mean that there is not working DHCP on
the network.

 Try to manually set an available IP address from
your network and give the correct netmask and
gateway (ip addr/ifconfig).

 Then try to communicate with another host in the
same network (ping) like the default gateway.

 IP address conflict happens when we use the same IP in
two or more nodes. This is one of the hardest problems to
detect. When 2 or more nodes have the same IP address
you will observe interruptions in their operation.

 Use ping from another computer and see if you get a
reply. If you disconnect (ifdown) the suspect
computer and you still get replies, this means that
the IP address is in use somewhere else.

 Try to assign an available IP address from the correct
network (ip addr/ifconfig) using the correct
netmask and gateway, and try to re-enable the
interface (ifup).

●IP Address Conflict

 Sometimes we may be confused and set an IP address that
it is apparently from our own network but it is, in fact, on
another network. For example 192.168.10.250 does not
belong to 192.168.10.0/25.

 Try to calculate the boundaries of your network. The
ipcalc command can be a valuable tool in such
cases.

 Then try to set an IP address from your network and
using the correct mask.

 Finally use ping to get an answer from other nodes in
your network.

IP from another subnet

ο

Unreachable remote networks

 If you can communicate with nodes inside your
own subnet but you cannot communicate with
other subnets, this is a typical problem,related to
the default gateway .

 The problem could be a gateway which is offline.
Try to get an answer from it with ping.

 The wrong gateway may have been specified. Try to
set the correct one with ip ro add default via after
consulting your network administrator.

Wrong hostname

 Some networks can pick up the hostname from the
computer and set it up in their DNS. In such
scenarios, if you have the wrong hostname, the
other computers will not be able to connect to you
using that hostname.

 Correct your hostname with the command hostname
(or hostnamectl)

 Try to ping it from another node in the network.
 If it works make the hostname persistent by adding it

in /etc/hostname or setting it with hostnamectl.

Problems with DNS
 If a system fails to resolve named to IP addresses,

the reason can be the lost communication with the
 DNS server. If we can talk to an IP address but
not the hostname this is a typical DNS problem.

 Try to ping the IP address of the host and then the
hostname (ping).

 If the IP address responds but not the hostname,
check the communication with the DNS server
with ping or try to send a DNS query to it with
host, dig or nslookup. If that fails try sending a
DNS query to a public DNS server such us 8.8.8.8
(Google DNS).

Check communication with remote
networks

 If we fail to communicate with a remote node or
network we should try to find the intermediate
device that causes this problem.

 The ping command can verify the problem but it
does not help us find where exactly is the problem.

 To troubleshoot the problem we have to use
traceroute or a similar command like tracepath or
mtr.

The `ip` command

 The ip command is a better replacement for the legacy ifconfig and
route commands.

 # ip address # show interfaces with ip information.

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

2: enp0s25: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
fq_codel state UP group default qlen 1000
 link/ether 28:d2:44:33:84:9c brd ff:ff:ff:ff:ff:ff
 inet 192.168.10.225/24 brd 192.168.10.255 scope global dynamic
noprefixroute enp0s25
 valid_lft 38044sec preferred_lft 38044sec
 inet6 fd64:d180:8b30:0:2ad2:44ff:fe33:849c/64 scope global
dynamic mngtmpaddr
 valid_lft 6993sec preferred_lft 1593sec
 inet6 fe80::2ad2:44ff:fe33:849c/64 scope link
 valid_lft forever preferred_lft forever

Check network information with `ip`

 # ip address # = ip a show IP information
on all interfaces.

 # ip addr show dev enp0s2 # show IP
information on enp0s2.

 # ip route # = ip ro show IPv4 routing
table.

 # ip -6 ro # show IPv6 routing table.

 # ip link # show link status.

Configure transient network settings
with `ip`

 # ip addr add 192.168.1.7/24 dev enp0s2 #
set non-persistent IP address on enp0s2.

 # ip addr del 192.168.1.7/24 dev enp0s2 #
delete IP address from enp0s2 (non-
persistent).

 # ip ro add default via 192.168.4.1 dev
eno1 # set default gateway.

 # ip ro add 192.168.5.0/24 via 192.168.5.1
dev enp0s3 # Add static rout.e

 # ip link set wlp3s0 down # disable
interface.

 # ip link set wlp3s0 up # enable interface.

The `hostname` command

 The hostname command can be used for setting and displaying
the hostname and domainname. Changing the hostname with
hostname is not persistent!

 $ hostname # show hostname
name-lpi

 $ hostname -f # show host and domain name
name-lpi.example.com

 # hostname other-name # change hostname.
This change is temporary and the name
will roll back on the next reboot unless
we set the hostname in /etc/hostname
and /etc/hosts.

The `ss` command

 The ss (socket statistic) is a utility for displaying active connections,
active ports and detailed statistics about network usage.

Options:
 -i # internal TCP informations.
 -s # detailed per protocol statistics.
 -a # show all listening ports and active connections.
 -l # show listening ports.
 -p # show the process behind each connection or

listening port.
 -r # resolve hostnames.
 -n # numeric results. It does not resolve hostnames and

ports which means faster results.
 -t # show TCP connections.
 -u # show UDP communication.

 # ss # show all sockets, TCP, UDP, ICMP and unix.

 # ss -tun # show TCP and UDP traffic in numeric
form.

 # ss -tur # display of TCP and UDP traffic and
resolve hostnames.

 # ss -a # show connections and ports.

 # ss -lnptu # show listening TCP and UDP ports, in
numeric form, along with programs that occupy
these ports.

 # ss -i # show internal TCP information.

 # ss -s # show detailed, per protocol statistics.

The `ss` command

Check network availability with
`ping`

 The ping command check the availability of network nodes using the
ICMP protocol.

 $ ping 127.0.0.1 # check the local TCP/IP stack
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.031 ms
64 bytes from 127.0.0.1: icmp_req=2 ttl=64 time=0.051 ms
^C # <= *** Ctrl-C to terminate ***
--- 127.0.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.031/0.041/0.051/0.010 ms

 $ ping www.google.com # check the response of www.google.com
PING www.l.google.com (173.194.69.147) 56(84) bytes of data.
64 bytes from bk-in-f147.1e100.net (173.194.69.147): icmp_req=1
ttl=47 time=100 ms
64 bytes from bk-in-f147.1e100.net (173.194.69.147): icmp_req=2
ttl=47 time=100 ms
64 bytes from bk-in-f147.1e100.net (173.194.69.147): icmp_req=3
ttl=47 time=102 ms
^C # <= *** Ctrl-C to terminate ***
--- www.l.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 100.609/101.233/102.330/0.820 ms

 $ ping -c4 2.1.1.1 # send only 4 ICMP packets to IP 2.1.1.1.
 # No response.
PING 2.1.1.1 (2.1.1.1) 56(84) bytes of data.

--- 2.1.1.1 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time
2999ms

 $ ping -c4 192.168.2.8 # send only 4 ICMP packets to
 # 192.168.2.8.
PING 192.168.2.8 (192.168.2.8) 56(84) bytes of data.
From 192.168.2.11 icmp_seq=1 Destination Host Unreachable
From 192.168.2.11 icmp_seq=2 Destination Host Unreachable
From 192.168.2.11 icmp_seq=3 Destination Host Unreachable
From 192.168.2.11 icmp_seq=4 Destination Host Unreachable

reply from 192.168.2.11 that 192.168.2.8 is offline
--- 192.168.2.8 ping statistics ---
4 packets transmitted, 0 received, +4 errors, 100% packet
loss, time 3013ms

Check network availability with
`ping`

 $ ping6 -c4 2001:4860:4860::8844
PING 2001:4860:4860::8844(2001:4860:4860::8844) 56 data
bytes
64 bytes from 2001:4860:4860::8844: icmp_seq=1 ttl=119
time=92.3 ms
64 bytes from 2001:4860:4860::8844: icmp_seq=2 ttl=119
time=93.1 ms
64 bytes from 2001:4860:4860::8844: icmp_seq=3 ttl=119
time=92.7 ms
64 bytes from 2001:4860:4860::8844: icmp_seq=4 ttl=119
time=92.9 ms

--- 2001:4860:4860::8844 ping statistics –
4 packets transmitted, 4 received, 0% packet loss, time 7ms
rtt min/avg/max/mdev = 92.270/92.719/93.058/0.363 ms

Note: on recent versions ping also works with IPv6.

Check network availability of IPv6
with `ping6`

Check network paths with
`traceroute` and `tracepath`

 These commands are used to check the path of a route until
a certain destination. The results will display the
intermediate nodes and if there is a problem, we will
know exactly where the problem is. traceroute has more
options than tracepath but the latter is default for most
distributions. traceroute and tracepath work for IPv6 on
recent systems but for older systems you may want to try
traceroute6 and tracepath6.

 There is also mtr which combines the results of
traceroute/tracepath and ping and continues producing
results until we press Ctrl-C.

$ traceroute malena.theo-andreou.org # find path to malena.theo-andreou.org.

traceroute to malena.theo-andreou.org (37.247.48.150), 30 hops max, 60 byte packets
 1 gateway (192.168.10.1) 0.231 ms * *
 2 gw.primeoffice.thunderworx.net (78.158.142.254) 1.094 ms 1.078 ms 1.424 ms
 3 gw.ip.primehome.com (46.21.57.254) 49.094 ms 49.110 ms 49.089 ms
 4 j1.lim-2.nsp-transit.net (78.158.134.118) 49.069 ms 49.066 ms j1.lim.nsp-transit.net

(78.158.134.250) 49.031 ms
 5 v3068.j1.fra.prime-tel.net (78.158.141.157) 97.865 ms 100.546 ms 100.570 ms
 6 213.140.39.140 (213.140.39.140) 102.387 ms 100.581 ms 102.761 ms
 7 5.53.5.253 (5.53.5.253) 115.164 ms 115.172 ms 111.848 ms
 8 5.53.4.28 (5.53.4.28) 102.615 ms 112.005 ms 113.865 ms
 9 be12956.agr41.fra03.atlas.cogentco.com (130.117.14.117) 129.002 ms 128.962 ms

128.894 ms
10 be3187.ccr42.fra03.atlas.cogentco.com (130.117.1.118) 131.774 ms 107.528 ms 105.803

ms
11 be2960.ccr22.muc03.atlas.cogentco.com (154.54.36.254) 112.813 ms

be2959.ccr21.muc03.atlas.cogentco.com (154.54.36.54) 113.138 ms
be2960.ccr22.muc03.atlas.cogentco.com (154.54.36.254) 112.830 ms

12 be3072.ccr51.zrh02.atlas.cogentco.com (130.117.0.17) 125.978 ms 125.930 ms 125.661
ms

13 be3586.rcr21.mil01.atlas.cogentco.com (154.54.60.114) 126.047 ms 125.913 ms
be2043.rcr21.mil01.atlas.cogentco.com (154.54.38.102) 125.998 ms

14 be3459.nr51.b019138-1.mil01.atlas.cogentco.com (154.25.12.74) 126.769 ms 128.092 ms
127.883 ms

15 prometeus.demarc.cogentco.com (149.14.134.122) 131.175 ms 131.180 ms 133.485 ms
16 37.247.50.20 (37.247.50.20) 129.294 ms 37.247.50.54 (37.247.50.54) 130.344 ms

130.225 ms
17 malena.theo-andreou.org (37.247.48.150) 130.919 ms 117.366 ms 37.247.50.51

(37.247.50.51) 130.660 ms

Check network paths with
`traceroute` and `tracepath`

$ tracepath malena.theo-andreou.org
 1?: [LOCALHOST] pmtu 1500
 1: gateway 0.640ms
 1: gateway 0.635ms
 2: gw.primeoffice.thunderworx.net 1.337ms
 3: gw.ip.primehome.com 48.664ms asymm 4
 4: j1.lim.nsp-transit.net 49.124ms asymm 5
 5: v3068.j1.fra.prime-tel.net 115.959ms asymm 6
 6: 213.140.39.140 129.760ms
 7: 5.53.5.253 103.743ms
 8: 5.53.4.28 109.318ms
 9: be12956.agr41.fra03.atlas.cogentco.com 141.998ms asymm 11
10: be3186.ccr41.fra03.atlas.cogentco.com 120.809ms asymm 12
11: be2960.ccr22.muc03.atlas.cogentco.com 127.217ms asymm 13
12: be3073.ccr52.zrh02.atlas.cogentco.com 131.622ms asymm 14
13: be3586.rcr21.mil01.atlas.cogentco.com 148.614ms asymm 15
14: be3459.nr51.b019138-1.mil01.atlas.cogentco.com 141.369ms asymm 16
15: prometeus.demarc.cogentco.com 139.371ms asymm 17
16: 37.247.50.20 133.596ms asymm 12
17: malena.theo-andreou.org 133.715ms reached
 Resume: pmtu 1500 hops 17 back 12

Check network paths with
`traceroute` and `tracepath`

The netcat (`nc`) command

 The netcat command is a utility to test network
connections across hosts.

 $ nc -l 4545 # open a listen daemon to port
4545 on the local machine

 $ nc 192.168.0.8 4545 # connect to port 4545
on the machine above. If you type something
here it will appear on the remote machine.

 $ nc -zv 192.168.0.8 80 # check if port 80 is
 # open
Connection to 192.168.0.8 80 port [tcp/http]
succeeded!

Note: connections with netcat are unencrypted!

Configure a network interface with
`ifconfig`

 The ifconfig command is a legacy utility that can be used to configure a network
interface and display network card settings. This configuration is not persistent!

 # ifconfig # show only active network interfaces

eth0 Link encap:Ethernet HWaddr 00:1c:25:9b:19:65
 inet addr:192.168.2.10 Bcast:192.168.2.255 Mask:255.255.255.0
 inet6 addr: fe80::21c:25ff:fe9b:1965/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:5364 errors:0 dropped:0 overruns:0 frame:0
 TX packets:5047 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:5400323 (5.4 MB) TX bytes:785883 (785.8 KB)
 Interrupt:20 Memory:fc200000-fc220000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:260 errors:0 dropped:0 overruns:0 frame:0
 TX packets:260 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:83809 (83.8 KB) TX bytes:83809 (83.8 KB)

 # ifconfig -a # show inactive interfaces as well.

 # ifconfig eth0 # show eth0 network settings.

 # ifconfig eth0 192.168.0.34 netmask 255.255.255.0 #
set IP and netmask for eth0.

 # ifconfig eth0 192.168.0.34 netmask 255.255.255.0 \
broadcast 192.168.0.255 # set IP, netmask and
broadcast address in eth0.

 # ifconfig eth0 down # disable eth0.

 # ifconfig eth0 up # enable eth0.

 # ifconfig eth0 up 192.168.0.34 netmask 255.255.255.0 #
configure the network interface and enable it at the
same time.

Configure a network interface with
`ifconfig`

The `netstat` command

 The netstat is a legacy utility for displaying active connections, active
ports, the routing table and detailed statistics about network usage.

Options:
 -i # interfaces list with statistics.
 -s # detailed per protocol statistics.
 -a # show all listening ports and active connections.
 -l # show listening ports.
 -p # show the process behind each connection or

listening port.
 -r # show routing table.
 -n # numeric results. It does not resolve hostnames

which means faster results.
 -t # show TCP connections.
 -u # show UDP communication.
 -c # repeatedly show results every second.

NOTE: in modern systems netstat is being phased out by the ss
utility.

 # netstat # show all sockets, TCP, UDP and unix.

 # netstat -tuc # continues update of TCP and UDP
traffic.

 # netstat -tun # numeric display of TCP and UDP
traffic.

 # netstat -an # show connections and ports in
numeric form.

 # netstat -lnptu # show listening TCP and UDP
ports, in numeric form, along with programs
that occupy these ports.

 # netstat -r # show routing table.

 # netstat -i # show interface and statistics.

 # netstat -s # detailed, per protocol statistics.

The `netstat` command

Configure a Linux system as a router

 Most Linux systems are not set as a router. This means that if a
packet arrives at an interface it cannot be forwarded from another
interface.

 # echo '1' > /proc/sys/net/ipv4/ip_forward #
set IPv4 packet forwarding (non persistent).

 # echo '1' > /proc/sys/net/ipv4/ip_forward #
set IPv4 packet forwarding (non persistent).

 For a more persistent solution set the following variables in the
/etc/sysctl.conf file:

net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding=1

Configure static routing with `route`

 The route command is a legacy utility for showing the routing table
and also for adding and removing static routes.

 $ route # show routing table with hostnames.

 $ route -n # show routing table numerically (IP
Addresses).

 # route add default gw 10.0.2.2 eth0 # set
10.0.2.2 as default gateway.

 # route add -net 10.200.0.0 netmask 255.255.0.0 gw
10.10.10.250 # set the 10.10.0.0/16 network over
the 10.10.10.250 gateway into the routing table.

 # route del -host 10.5.4.6 netmask 255.255.255.0
gw 172.16.1.1 # delete host 10.5.4.6 with
gateway 172.16.1.1 from the routing table.

Connect to FTP servers with `ftp`

 The ftp command is a client for connecting to ftp servers via CLI.

 # ftp ftp.debian.org # connect to ftp.debian.org.

 # ftp -v ftp.debian.org # connect in verbose mode.

 Commands:
ftp> ls # list files/directories.
ftp> cd dir # change into directory dir.
ftp> get file1 # get file file1.
ftp> mget file[1-9] # get multiple files file1,
file2, ..., file9.
ftp> put file2 # upload file file2 from local
working directory.
ftp> mput file[a-f] # upload multiple files.
ftp> pwd # print working directory on server.
ftp> quit # = exit. Exit ftp server.

Connect to services with `telnet`

 The telnet command was used in the past for shell access on remote
nodes. Because of its inhered weakness to send everything in
cleartext, it was replaced by ssh which supports encryption

 Nevertheless it is a useful troubleshooting tool for non encrypted
services like HTTP, SMTP etc.

 $ telnet telehack.com # connect to telehack.com.
 $ telnet www.debian.org 80 # connect to the debian

 # webserver for
 # checking the service.
GET

 $ telnet mail.theo-andreou.org 25 # connect to
 # mailserver for basic health check.
quit

 $ telnet towel.blinkenlights.nl # try and see! :).

Search for domain and IP owners
with `whois`

 The whois command sends queries in domain
registries and IP assigning authorities for finding
who is responsible.

 $ whois lpi.org # search for people or
organizations responsible for the
lpi.org domain.

 $ whois 8.8.8.8 # search for people or
organizations responsible for the
8.8.8.8 domain.

 $ whois ellak.org.cy # alas it does not
work for .cy domains!

License

The work titled ”LPIC-1 102-500 – Lesson 15” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

