

LPIC-1 102-500 – Lesson 1

105.1 Customize and use the shell
environment

The bash shell

 By far, the most popular Linux shell
 Part of the GNU project
 Provides a Command Line Interface to Linux
 Has its own scripting language
 Hosts shell and environment variables
 Supports alternative command naming (aliases)
 Supports functions
 Provides the facility to run scripts, small programs

for automating tasks

Shell variables – Environment
variables

 $ NAME=Nick # set shell variable NAME
with value Nick

 $ export NAME # export the NAME
variable as an environment variable,
inherited by child shells and
processes

 $ export NAME=Nick # combine the two
commands above in one

 $ echo $NAME # show variable NAME if
set

 $ export PATH=$PATH:/opt/bin # add
directory /opt/bin in PATH

Predefined Environment Variables

 $ echo $PATH # defines the paths for
executable programs and commands

 $ echo $HOME # defines the home directory
of the current user

 $ echo $USER # defines the username of the
current user

 $ echo $TERM # sets the terminal type.
it can assume values like xterm,

linux or vt100

 $ echo $PS1 # sets the bash prompt

Command aliases

 Command aliases are used to create alternative commands
which combine or alter the behavior of current commands

 $ alias grep='grep --color=auto' # the grep
alias will run the command: grep –
color=auto

 $ \grep UUID /etc/fstab # run the bare grep
command not the alias!

 $ alias many='cd; ls -la; pwd' # combine
many commands into one

 $ many # run the previously set alias as a
command

 $ alias # running alias without arguments
will print the current aliases

Bash functions

 Bash functions provide additional functionality with respect to
aliases

 $ function manyf () { cd; ls -la; pwd; } #
similar to the command: $ alias many='cd ;
ls -la ; pwd'

 $ manyf () { cd; ls -la; pwd; } # the function
command is optional and can be omitted

 $ manyf # run the manyf function

 $ manyf2 () { cd $1; ls -la; pwd; } # modify
the manyf function so as to accept
arguments: $1 = first cli argument

 $ manyf2 /etc # run function manyf2 with
argument: $1 = /etc

Show variables, aliases and functions

 $ env # show environment variables

 $ alias # show aliases

 $ set # show shell variables and
functions

 $ man env # more info about env

 $ man builtins # look for more
information about alias, set and
unset

The `set` and `unset` commands

 $ set -o # show bash configuration
parameters

 $ set -o <param> # activate
parameter

 $ set +o <param> # deactivate
parameter

 $ unset <var> # unset a shell or
environment variable

Bash Configuration files

 /etc/profile: global initialization files executed on login for
all users. It usually contains global variables like $PATH
and startup applications. There is also the /etc/profile.d/
directory where different script files serve the same
purpose as /etc/profile

 /etc/bashrc (or /etc/bash.bashrc): global initialization file,
executed on bash startup for all users. Usually contains
functions or aliases

 ~/.bash_profile: personal initialization file, different for
each user. Executed on login

 ~/.bash_login: personal initialization file, different for each
user. Executed on login only if bash_profile does not
exist.

 ~/.profile: personal initialization file, different for each
user. Executed on login if bash_profile or bash_login
does not exist

 ~/.bashrc:personal initialization file, different for each
user. Executed on bash startup

 ~/.bash_logout: executes on logout from bash
 ~/.inputrc: optional personal configuration file, that may

contain bash configuration option that vary from the
default

Bash Configuration files

The /etc/skel directory

 The /etc/profile and /etc/bashrc are common for all users
and executed before the respective personal
configuration files
(.bash_profile, .bash_login, .profile, .bashrc)

 The personal .bash_profile, .bash_login, .profile, .bashrc
and .bash_logout are created on new user creation and
copied from /etc/skel

 After the creation of the personal configuration files the
users have the right to tweak these files as they please

 The /etc/skel directory provides the “skeleton” for the
structure and content of the personal home directory of
new users

The $? special variable

 The $? special variable holds the exit status of the previous command. If
there are no errors, the result is ”0” while on errors it can assume
different values like ”1”, ”2”, ”127” etc

 $ grep ext /etc/fstab # search for the existing
string 'ext' in fstab

 $ echo $? # in this case the exit value is "0"
(string exists)

 $ grep bogus_string /etc/fstab # search for a non
existing string in fstab

 $ echo $? # in this case the exit status is "1"

 $ grep --nopar ext /etc/fstab # use an invalid
grep option

 $ echo $? # in this case the exit status is "2"

 $ man <command> | grep -A 4 "exit status"

Bash Lists

 Bash lists are sequences of commands or expressions which are
separated by one of the operates “;”, “&”, “&&”, or “||” and
optionally terminated by “;”, “&” or a newline “\n” (man
bash and look for Lists)

 $ cd /etc ; ls -la ; pwd # the commands in this list will be
executed sequentially. When the command in the left
terminates, the next command starts and so on

 $ cd /etc && ls -la && pwd # logical AND list. Every next
command will be executed only if the previous command
terminated successfully, i.e. the exit status was “0”

 $ cd /etc || ls -la || pwd # logical OR list. Every next command
will be executed only if the previous command terminated
erroneously, i.e. the exit status was different than “0”

License

The work titled ”LPIC-1 102-500 – Lesson 1” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

