

LPIC-1 102-500 – Lesson 19

110.3 Securing data with encryption

The SSH (Secure Shell) service

 Traditionally the TELNET service was used for remote shell
access to other network nodes. This service is insecure by
design, because all information is send in cleartext. No
encryption takes place. This a serious liability in system
security

 The SSH service has replaced TELNET in modern systems
because it provides Public-Key Cryptography and thus,
secure communications. There are two versions: version 1
and version 2. The first version does not provide sufficient
security by modern standards, so the use of version 2 is
recommended.

 The ssh command is the client that connects to the sshd for
shell access

 There also the scp command for secure, network file transfer.

Connect to other network nodes with
`ssh`

 The ssh command is the client side of an SSH system and used for
connecting to other systems over network

 $ ssh user1@example.com # = ssh -l user1 example.com

The authenticity of host 'example.com (10.0.1.50)' can't
be established.

RSA key fingerprint is
47:e2:fd:2d:62:b8:b4:37:66:b2:c2:d1:59:a5:ab:98.

Are you sure you want to continue connecting (yes/no)?

 By answering “yes” in the question above, the remote host’s public
key will be saved permanently to the ~/.ssh/known_hosts file and
you will not be asked again about this host. If you answer “no”
then the connection is dropped and the ~/.ssh/known_hosts file is
not updated

The configuration files for ssh and
sshd

 /etc/ssh/ssh-config # configuration file for the ssh client
Port 22 # the default ssh port
Protocol 2 # connect to SSH hosts using version 2 only!

 /etc/ssh/sshd-config # the sshd daemon configuration file
PermitRootLogin no # setting to yes is considered a bad practice
 # login
PubkeyAuthentication yes # activate public key
 # authentication.
PasswordAuthentication no # disable password
 # authentication.
Protocol 2 # use SSH version 2 for connections,
X11Forwarding yes # support executing graphical applications
 # via SSH. Disable it if you don’t need it.

Secure file transfer with `scp`

 The scp command is used for the secure transfer of files from the
local host to the remote and vice-versa

 $ scp mydoc.odt user1@example.com: # copy file
mydoc.odt to the home directory of user1, in
the example.com server. The ":" is very
important because without that, scp behaves
like a local cp

 $ scp mydoc.odt user1@example.com:Documents #
copy local file mydoc.odt to directory
Documents under the remote home directory of
user1

 $ scp user1@example.com:Documents/mydoc.odt .
copy remote mydoc.odt from Documents on
the remote home directory of user1 on
example.com, to the local working directory

 Public-Key Cryptography is an asymmetric cryptography technique used by
SSH, SSL, PGP, GPG etc

 Some of the encryption algorithms are RSA, DSA, ECDSA and Ed25519

 A key generator, produces two keys where we can use the one key to
encrypt cleartext data and the other to decrypt encrypted data. One key
assumes the role of private key, and the other key is the public. The
public key can be shared to anybody while the private key must be
protected.

Public Key Cryptography

Author:
User:KohanX
Wikipedia

Public Key Cryptography
Provides confidentiality but not non-repudiation (signing)

Public Key Cryptography
Provides non-repudiation (signing) but not confidentiality

Public and Private SSH keys
 During the initialization of the sshd daemon the host ssh private and

public keys will be created. The default algorithm use is RSA
 # ls -la /etc/ssh/*key*
-rw------- 1 root root 227 Jun 29 15:58 ssh_host_ecdsa_key
-rw-r--r-- 1 root root 177 Jun 29 15:58 ssh_host_ecdsa_key.pub
-rw------- 1 root root 411 Jun 29 15:58 ssh_host_ed25519_key
-rw-r--r-- 1 root root 97 Jun 29 15:58 ssh_host_ed25519_key.pub
-rw------- 1 root root 1679 Jun 29 15:58 ssh_host_rsa_key
-rw-r--r-- 1 root root 397 Jun 29 15:58 ssh_host_rsa_key.pub

 When we connect to an SSH service we get its public RSA key so the
SSH client can use that to encrypt the connection

 When you connect to a host for the first time, you are prompted to
accept the public ssh key, and if you accept it this will be saved in
the ~/.ssh/known_hosts file for reuse

 If the SSH public key of a host changes, the system will issue a strict
warning and refuse to connect until you delete the old key from
~/.ssh/known_hosts

SSH Public Key Authentication
 SSH provides various means of authentication. Besides the

traditional username and password authentication, there is also the
Public Key Authentication which is emerging as the best practice
for secure SSH connections

 user1@local:~$ whoami # local user is user1
user1

 user1@local:~$ ssh-keygen -t rsa -b 4096 # generate user ssh
 # key pair

Generating public/private rsa key pair.
Enter file in which to save the key (/home/user1/.ssh/id_rsa):
Created directory '/home/user1/.ssh'.
Enter passphrase (empty for no passphrase):*******
Enter same passphrase again:
Your identification has been saved in /home/user1/.ssh/id_rsa.
Your public key has been saved in /home/user1/.ssh/id_rsa.pub.
The key fingerprint is:
83:40:c4:05:39:d8:58:c0:ed:d4:a0:40:6d:87:6c:a4 user1@local

 user1@local:~$ ls -l .ssh/ # private and
 # public keys of user1

-rw------- 1 user1 user1 1679 Apr 4 22:35 id_rsa
-rw-r--r-- 1 user1 user1 400 Apr 4 22:35 id_rsa.pub

 user1@local:~$ cat .ssh/id_rsa.pub | ssh \ user2@remote.dom
"xargs -I {} echo {} >> \ .ssh/authorized_keys" # append
the user1@local.dom pubkey to the .ssh/authorized_keys file
of user user2@remote.dom.

user2@remote.dom's password: # enter user2 password

 ssh user2@remote.dom # ssh without password!
Last login: Wed Apr 4 22:58:35 2012 from local.dom

user2@remote:~$

 user2@remote:~$ whoami # verify user2

SSH Public Key Authentication

 user2@remote:~$ grep user1 .ssh/authorized_keys #
 # check authorized keys
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDBAfRMHpzJ6NfnOCcBOjE5X
xip03eHbIIDGnrpmyc8fWjGqwN3mZZ3HzJ2fNJZJA6rdMEtlcGt1M
gcPcLUqLx93jZr/ZL3Me3d9e9JretivjcicFV4gU/
2m3pQHy1aKvyioGqytmtUKwEZzJzC+nZNK/
Fd+glMUu6q8Py3QFspPBb1NEw7cKgYKn5kOcV3Th4KAvYwzo+VlHu
HIS0MlffGDxId4m7C+DqMX1utdUJ7reYAGNWFlSAh7ajqVNDtOGAQ
C743BOBuyTdPrnLtFc1A45mR2l2P9PU4iqYhiYpKLOxqK6oeQIcom
q/KcCz1+HPoYWPDq2EB5CWAmaKLNQcb user1@local

 After the Public Key Authentication method is enabled it is
recommended to disable the password authentication, to mitigate
SSH dictionary/brute-force attacks. Because no password is
required, this method is also useful for executing scripts from one
server to another (e.g. backup scripts), for cluster systems or
merely for convenience (password fatigue)

SSH Public Key Authentication

The `ssh-keygen` command

 The ssh-keygen command is used for generating an ssh public/private key pair for
the ssh client or the sshd daemon

 $ ssh-keygen -l -f ~/.ssh/id_rsa # show key info
2048
a5:c6:87:06:ea:d6:09:f6:4d:a9:25:31:e4:a0:fb:df .ssh/
id_rsa.pub (RSA)

Options:

 -b # number of bits. Default is 2048. For new systems
4096 is recommended

 -p # change private key encryption passphrase

 -f file # set output file

 -C 'some comments' # set key comments

 -P 'oldlongpassphrase' # old passphrase

 -N 'newlongpassphrase' # new passphrase

Enhance security with `ssh-agent`

 The problem that occurs if we use an unencrypted
key, is that if our local system is hijacked then the
attacker can login on our remote hosts
effortlessly!

 If we use a passphrase during the key generation
this cannot happen, but we have to enter the
passphrase on every ssh connection!

 The ssh-agent provides a convenient way to use
encrypted keys by providing the passphrase once,
at the first login, and re-using that for the whole
session and resulting child shells

 $ ssh-keygen -t rsa -b 2048 # generate key pair

Generating public/private rsa key pair.
Enter file in which to save the key (/home/user1/.ssh/id_rsa):
Created directory '/home/user1/.ssh'.
Enter passphrase (empty for no passphrase): MySecret
Enter same passphrase again: MySecret
Your identification has been saved in /home/user1/.ssh/id_rsa.
Your public key has been saved in /home/user1/.ssh/id_rsa.pub.
The key fingerprint is:
83:40:c4:05:39:d8:58:c0:ed:d4:a0:40:6d:87:6c:a4 user1@mypc

 $ ssh-agent /bin/bash # activate ssh-agent in a new shell. To

activate it on a running shell use should use the command
'eval $(ssh-agent -s)'

 $ ssh-add ~/.ssh/id_rsa # add key in ssh-agent. If you simply
run 'ssh-add' all keys will be added. You only need to do
this once.

Enhance security with `ssh-agent`

SSH Port channels (Tunneling)

 $ ssh -X user@10.0.1.50 # allows executing graphical
commands on 10.0.1.50 and having the graphical window
on the local machine (X11Forwarding must be set to
yes).

 $ ssh -N -f -L 2525:smtp.example.com:25
bob@gate.example.com # forward the local 2525 port to
the remote 25 port of the server smtp.example.com
using an intermediate proxy gate.example.com

 $ telnet localhost 2525 # this will lead to the 25
of the server smtp.example.com

 $ ssh -L 3306:localhost:3306 bob@mysql.example.com
forward the local 3306 port to the remote 3306 port
of mysql.example.com

 Port forwarding can be a security issue in some environments and so it can be
disabled with AllowTcpForwarding no

`ssh` options

 -l # set user name

 -Χ # execute graphical program from the
remote machine to the local X server

 -L # connect a local port to a remote

 -R # connect a remote port to a local

 -Ν # do not execute a remote command
(e.g. bash)

 -f # send ssh process to the background

 -v # verbose output (useful for
debugging)

The `gpg` encryption and signing
utility

 The GPG (GNU Privacy Guard) utility is used as
an encryption and signing tool for files and emails

 It uses mainly Public Key Cryptography and it was
designed as an alternative to the proprietary PGP
(Pretty Good Privacy)

 It can be used as a standalone utility or be
integrated with other applications like email
clients

 $ gpg –gen-key # generate a GPG key pair

Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 4
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 4096
Requested keysize is 4096 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 5y
Key expires at Tue 04 Apr 2023 12:52:36 AM EEST
Is this correct? (y/N) y

The `gpg` encryption and signing tool

Real name: Bob Crypt
Email address: bob.crypt@example.com
Comment: Bob the One
You selected this USER-ID:
 "Bob Crypt (Bob the One) <bob.crypt@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

gpg: gpg-agent is not available in this session

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

The `gpg` encryption and signing tool

...+++++

....+++++
gpg: /home/bob/.gnupg/trustdb.gpg: trustdb created
gpg: key 1C877AA9 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2017-04-03
pub 4096R/1C877AA9 2012-04-04 [expires: 2023-04-03]
 Key fingerprint = 537D E04B 6852 4F7E 5880 AFAC E49A 1815 1C87 7AA9
uid Bob Crypt (Bob the one) <bob.crypt@example.com>

Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a subkey for this purpose.

The `gpg` encryption and signing tool

 $ ls -la .gnupg/

total 1736
drwx------ 5 user1 user1 4096 Aug 26 10:09 .
drwxr-xr-x 31 user1 user1 4096 Aug 22 23:02 ..
drwx------ 2 user1 user1 4096 Jun 16 2016 crls.d
-rw-rw-r-- 1 user1 user1 0 Jun 16 2016 .gpg-v21-migrated
drwx------ 2 user1 user1 4096 Jun 16 2016 openpgp-revocs.d
drwx------ 2 user1 user1 4096 Jun 16 2016 private-keys-v1.d
-rw------- 1 user1 user1 845144 Aug 23 01:07 pubring.gpg
-rw------- 1 user1 user1 844721 Aug 22 23:13 pubring.gpg~
-rw------- 1 user1 user1 600 Aug 25 18:25 random_seed
-rw------- 1 user1 user1 0 Apr 22 2016 secring.gpg
-rw-r--r-- 1 user1 user1 49152 Aug 1 04:15 tofu.db
-rw------- 1 user1 user1 7040 Aug 1 04:15 trustdb.gpg

The `gpg` encryption and signing tool

Other `gpg` functions

 $ gpg --import user_test_example.asc # import
a public key of another user from an .asc
file

 $ gpg --edit-key "User.test" # sign an
imported key with our key.

 $ gpg –list-keys # list of personal and
imported keys

 $ gpg --export my_gpg_key_backup # extract
your key for backup

 $ gpg -e -u "Bob Crypt" -r "User Test"
mydoc.odt # encrypt file so only User Test
can open it

 $ gpg -d mydoc.odt # decrypt the mydoc.odt
file from User Test

License

The work titled ”LPIC-1 102-500 – Lesson 19” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

