

LPIC-1 102-500 – Lesson 7

107.2 Automate system
administration tasks by scheduling

jobs

The cron system

 The cron system is used for the periodic scheduling
of commands based on the minute, hour, day of
the month, month and day of the week.

 It uses the crond daemon (simply cron in debian)
and different configuration files

cron configuration files

 /etc/crontab # this is the basic configuration file which include
commands for the periodic execution of commands on an hourly,
daily, weekly and montly basis. We usually avoid setting
schedules tasks in this file and we prefer the rest of the
configuration methods

 /etc/cron.d/ # in this directory we can create files with the same
format as /etc/crontab. It is recommended to have a different file
for each task.

 /etc/cron.hourly/, /etc/cron.daily, /etc/cron.weekly,
/etc/cron.montly # in these directories we have scripts to be
executed on an hourly, daily, weekly and monthly basis. The exact
times for the execution are defined in /etc/crontab.

Format of the /etc/crontab and
/etc/cron.d/* files

 # minute hour dayofmonth month dayofweek user command

 45 7 3 * * root myscript
minute: minute of the hour. Accepts values from 0 – 59
hour: hour of the day. Values range from 0 – 23
dayofmonth: day of the month. Accepts values from 1 – 31
month: month. Accepts values from 1-12 or jan, feb, mar, apr,
may, jun, jul, aug, sep, oct, nov, dec
dayofweek: day of the week. Accepts values from 0 – 7 or sun -
sat. 0 or 7 represents Sunday (sun), 1 is for Monday (mon), 2 for
Tuesday (tue), 3 for Wednesday (wed), 4 for Thursday (thu), 5 for
Friday (fri) and 6 for Saturday (sat).

 In the example above the myscript script will be executed every 3rd
of each month at 7:45 am by the root user.

month hour dayofmonth month dayofweek user command
 # execute at every quarter of 6:00 and 18:00 every 5 days.
 0,15,30,45 6,18 5,10,15,20,25,30 * * root myscript
 # identical time setting to the above but more readable
 */15 6,18 5-30/5 * * apache apscript
 # run backup every Friday
 0 4 * * 5 root backup.sh
 # Caution! This does not mean every last Friday of the month but every
 # day between 24-31 and every Friday of the month!
 0 4 24-31 * 5 root backup.sh
 # run every Friday of August at 6:30 in the morning
 30 6 * aug fri root reminder.sh
 # identical time setting to the above
 30 6 * 8 5 root reminder.sh

run the command every minute!
* * * * * root script.sh

More examples

 The crontab command should not be confused with the
/etc/crontab configuration file.

 It can be used to schedule tasks by each user individually

 It uses the default editor of the system (nano σε Debian)
otherwise the editor set by the $EDITOR variable or the
select-editor command.

 The file format is the same as /etc/crontab with the notable
difference that we do not need to define the user who
executes the task.

 The resultant configuration files for each user are saved under
the /var/spool/cron directory (/var/spool/cron/crontabs in
Debian)

Scheduling commands for all users
with `crontab`

 $ crontab -e # edit personal user crontab file
min hour dom mon dow command
 30 8 3 11 * reminder_wifes_birthday.sh
 0 18 * * 5 echo "yoopi\!" | mail -s

 "It\'s Friday" user@example.com

Options:

 -l # show the scheduled tasks of the active user

 -r # delete the personal crontab file of the active user and all the
containing tasks.

 -u user # only the root user has the right to edit, view and
delete cron tasks of other users

Scheduling commands for all users
with `crontab`

Controlling cron usage rights with
/etc/cron.allow and /etc/cron.deny

 The /etc/cron.allow and /etc/cron.deny files control which
users can use the cron service.

 If none of the files exist then all users are allowed to use
cron using the crontab command.

 If there is a cron.deny file only, then everybody included
in it are not allowed to use cron

 If there is a cron.allow file only, then only those included
in it are allowed to use cron

 If both files exist then cron.deny is ignored and only those
included in cron.allow will be allowed to use cron.

The at system

 The at system comprises the atd daemon and the
commands at, atq, atrm and batch.

 This system allows the execution of one time only
scheduled commands (not periodically like cron)

 The at command is used to schedule one time only commands

 # echo "shutdown -r now" | at 0400 # restart at
04:00 in the morning

 # echo 'mail -s Logs root < /var/log/messages' |
at 00:00 feb 28
email logfiles at midnight of 28th of February

 # at 12:00 dec 21 2012 # shutdown the system
 on 21/12/2012
shutdown -h now "This is the end"
^D # (Press Ctrl-D to terminate the text)

 # at 8pm + 3 days <<EOF # run backup in 3 days at
 8pm
backup.sh
EOF

Scheduling commands with `at`

 # at -f commands.txt tomorrow # run the commands from the
commands.txt text file tomorrow same time.

 # at -f commands.txt now + 2 days # run the commands from the
commands.txt text file in two days same time.

 Options:

 -f file # run commands from text file

 -l # list taks. The root user will view all the tasks for all users

 -d job1 job2 job3 ... # delete tasks

Scheduling commands with `at`

View tasks with `atq`

 The atq command is identical to at -l and can be
used to view scheduled tasks

 # atq # = at -l. list at tasks. The root user will view
all the tasks for all users. Regular users will only
see their own tasks.

Delete tasks with `atrm`

 The atrm command is identical to at -d and is used
for deleting tasks

 # atrm 3 5 6 # = at -d. Delete tasks 3, 5 and 6.
Regular users can only delete their own tasks
while the root user can delete the tasks of every
user.

Controlling at usage rights with
/etc/at.allow and /etc/at.deny

 The /etc/at.allow and /etc/at.deny files control which users
can use the at service.

 If none of the files exist then no user is allowed to use the
at, atq and atrm commands.

 If there is a at.deny file only, then everybody included in it
are not allowed to use at.

 If there is a at.allow file only, then only those included in it
are allowed to use at.

 If both files exist then at.deny is ignored and only those
included in at.allow will be allowed to use at.

Systemd timers

 On systems that use systemd init, there is an
alternative way to run scheduled tasks, using
systemd timers.

 For this you need to have a timer file with the same
name as the service file:

/etc/systemd/system/backup.service
/etc/systemd/system/backup.timer

 If necessary, it is possible to control a differently-
named unit using the Unit= option in the timer's
[Timer] section.

Example Service File

 [Unit]
Description=Bacakup Task

[Service]
Type=oneshot
User=root
ExecStart=/usr/local/sbin/backup.sh
RemainAfterExit=no
Nice=19

[Install]
WantedBy=multi-user.target

Example Timer File

 [Unit]
Description=Backup Timer

[Timer]
Runs every day at 3:00 am
OnCalendar=*-*-* 03:00:00

[Install]
WantedBy=timers.target

Example Timer File

 [Unit]
Description=My Task

[Timer]
Runs weekly and on boot
OnBootSec=15min
OnUnitActiveSec=1w

[Install]
WantedBy=timers.target

OnCalendar Format

 OnCalendar uses the following format:
DayOfWeek Year-Month-Day Hour:Minute:Second

 OnCalendar=Mon,Tue *-*-01..04 12:00:00 # Run the first
four days of the month but only if Monday or Tuesday

 OnCalendar=Sat *-*-1..7 18:00:00 # run every Saturday

 OnCalendar=*-*-* 4:00:00 # Run daily at 4:00 am

 OnCalendar can be specified more than once in a timer file.

The `systemd-run` command

 systemd-run is used to start transient services on
systemd systems. One use of this is as an at
replacement but it is much more powerful

 Options:
 --on-active= # you can specify seconds from now
 --on-calendar= # you can specify a time using the

OnCalendar format
 --user: for regular users

The `systemd-run` command

 systemd-run –on-active=300 /myscript # run task after
300 seconds from now

 systemd-run –on-calendar=2025-01-01 /myscript # run
task on 2025 new year’s day!

 systemd-run --on-calendar "2021-12-05 23:00" /myscript
run task at 11 pm on 2021-12-05

License

The work titled ”LPIC-1 102-500 – Lesson 7” by
Theodotos Andreou is distributed with the

Creative Commons Attribution ShareAlike 4.0
International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

